通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)4、随堂练习。(约5分钟)76页第一题,共3个小题。教学效果:在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。 分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。5、数学理解(约5分钟)教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。补充例3 计算(xy-x2)÷ ? 教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。6、课堂小结(约3分钟)先学生分组小结,在全班交流,最后老师总结。
一、说教材《分式的加减法》是本册教材第三章《分式》重要内容,是进一步学习分式方程、反比例函数以及其它数学知识的基础,同时也是学习物理、化学等学科不可缺少的工具。与其它数学知识一样,它在实际生活中有着广泛的应用。学习分式的加减法并熟练地进行运算是学好分式运算的关键,为学生综合运用多种运算法则拓宽了空间,有利于学生对双基的掌握,在综合运用多种运算法则的过程中,逐渐形成运算能力。同时本节课的教学难度有所增加,学生通过观察、类比、猜想、尝试等一系列思维活动中,发现规则、理解规则、应用规则。考虑到以上这些因素,确定本节课的目标和重点、难点如下:(一)说教学目标:1.知识与技能目标:理解并掌握异分母分式加减法的法则;经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养学生在学习中转化未知问题为已知问题的能力;进一步通过实例发展学生的符号感。
注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)设计意图:通过观察图片和回顾以前的知识,使学生由感性认识上升到理性认识。通过描述平行四边形的特点和定义,也培养了学生的语言表达能力。同时也渗透了一些由实际问题转化为数学问题的“转化”的数学思想。(三)、引导实验探索新知【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.动手操作并思考:让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?
回顾整节课的设计,我主要着力于以下三个方面:1.关于教材处理:认真处理教材,目的只有一个——为我的学生尽可能多地提供参与活动的机会,在本节课中主要体现在以下几点:(1)通过“合成代数式”、“赋予分式实际意义”两个活动,激发兴趣,吸引学生参与活动;(2)通过“互举例子”、“填表探究”两个活动,鼓励学生主动参与活动;(3)通过“应用新知”这个环节,促进学生参与活动。2.关于教与学方法的选择:我在设计中始终关注:如何精心组织活动,让学生在丰富的活动中探索、交流与创新,因此我选择了“引导——发现教学法”,具体做法如下: (1)用数、式通性的思想,类比分数,引导学生独立思考、小组协作,完成对分式概念及意义的自主建构,突出数学合情推理能力的养成;(2)加强应用性,通过“应用新知”、“深化拓展”两个环节,密切分式与现实生活及其他学科的联系,发展数学应用意识,突出分式的模型思想。
设计目的:通过学生的反馈练习,使教师能全面了解学生对公因式概念的理解是否到位,提取公因式的方法与步骤是否掌握,以便教师能及时地进行查缺补漏.但依然有部分同学会出现问题,如对首项出现负号时不能正确处理,此时,需要老师进一步引导.第四环节 课堂小结从今天的课程中,你学到了哪些知识?你认为提公因式法与单项式乘多项式有什么关系?怎样用提公因式法分解因式?设计目的:通过学生的回顾与反思,强化学生对确定公因式的方法及提公因式法的步骤的理解,进一步清楚地了解提公因式法与单项式乘多项式的互逆关系,加深对类比的数学思想的理解。第五环节 当堂检测把下列各式分解因式(1)2x2-4x (2)8m2n+2mn(3)-4a3b3+6a2b-2ab (4)2n2-mn-n*(5)3an+1-2anc-7an+2设计目的:检验学生的目标达成情况,其中第五小题供学有余力的学生选作。第六环节 课后反思教学反思
1、数数格子,认清方向(完成想想做做第1题)设计意图:本题在于让学生认清平移的方向和距离,感受平移的不同方法。在教学中,让学生自己独立思考完成,自由发言。鼓励学生说出不同的平移方法。2、小试牛刀(完成想想做做第2题)设计意图:本题主要是让学生掌握按要求画平移后的图形。这是本节课的难点。在教学中,先让学生独立画图,教师巡视作图情况,对有困难的学生给予指导。在学生完成作图后,投影部分学生的作品,交流平移的过程与方法。最后在多媒体课件上展示画法。.3、平移的运用(“想想做做”第3题)设计意图:本题在于使学生学会运用平移的知识画平行线,体会平移的价值。(四)课堂小结,升华提高提问:今天你有哪些收获?设计意图:以问题为载体,引领学生对本节课的归来总结。让学生再次理解图形的斜向平移可转换成横向平移和竖向平移。
学生在观察和讨论后,由师生合作,归纳出中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)关于中心对称的两个图形是全等图形.让学生尝试自己证明△ABC与△A′B′C′全等,然后在教师的引导下相互交流。接着,对“轴对称”和“中心对称”的概念进行比较,我采用列表格的方式,从三个方面分别让学生去填,意图让学生把新学的知识及时纳入到已学的知识体系中去。4、灵活运用体会内涵1)首先讲授例1。(1)选择点O为对称中心,画出点A关于点O的对称点A′;(2)选择点O为对称中心,画出线段AB关于点O的对称线段A′B′.(3)已知四边形ABCD和O点,画出四边形ABCD关于O点的对称图形。在老师的引导下,共同完成作图,并规范画图方法:要画一个多边形关于已知点的对称图形,只要画出这个多边形的各个顶点关于已知点的对称点,再顺次连接各点即可。在本次活动中,意图利用中心对称的性质进行作图,加强对中心对称性质的理解。
目的:进一步理解追击问题的实质,与课程引入中的灰太狼追喜羊羊故事呼应,问题得到解决。环节三、运用巩固活动内容:育红学校七年级学生步行郊外旅行,1班的学生组成前队,步行速度为4千米/小时,3班的学生组成后队,步行速度为6千米/小时,1班出发一个小时后,3班才出发。请根据以上的事实提出问题并尝试回答。问题1:3班追上1班用了多长时间 ?问题2:3班追上1班时,他们离学校多远?问题3:………………目的:给学生提供进一步巩固建立方程模型的基本过程和方法的熟悉机会,让学生活学活用,真正让学生学会借线段图分析行程问题的方法,得出其中的等量关系,从而正确地建立方程求解问题,同时还需注意检验方程解的合理性.实际活动效果:由于题目较简单,所以学生分析解答时很有信心,且正确率也比较高,同时也进一步体会到了借助“线段图”分析行程问题的优越性.
在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲.让学生作课堂的主人,陈述自己的结果.对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径.预先设想学生思路,可能从以下方面分类归纳,探索规律:① 从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)② 从加数的不同数值情况(加数为整数;加数为小数)③ 从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)④ 从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)⑤ 从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏.
一、教材分析轴对称是现实生活中广泛存在的一种现象,本章内容定位于生活中轴对称现象的分析,全章内容按照“直观认识——探索性质——简单图形——图案设计”这一主线展开,而这节课作为全章的最后一节,主要作用是将本章内容进行回顾和深化,使学生通过折叠、剪纸等一系列活动对生活中的轴对称现象由“直观感受”逐渐过渡到从“数学的角度去理解”,最后通过图案设计再将“数学运用到生活中”。轴对称是我们探索一些图形的性质,认识、描述图形形状和位置关系的重要手段之一。在后面的学习中,还将涉及用坐标的方法对轴对称刻画,这将进一步深化我们对轴对称的认识,也为“空间与图形”后继内容的学习打下基础。二、学情分析学生之前已经认识了轴对称现象,通过扎纸探索了轴对称的性质,并在对简单的轴对称图形的认识过程中加深了对轴对称的理解,但是对生活中的轴对称现象仍然以“直观感受”为主。
6、袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中任意摸出一个球,若摸到红球的可能性最大,则m的值不可能是( )A.1 B.3 C. 5 D.10活动目的:拓宽学生的思路,对本节知识进行查缺补漏,并进一步的巩固加深,鼓励学生大胆猜测,培养学生勤于动脑、勇于探究的精神. 注意事项:对于第4题与第5题可适当的说出事件发生的可能性的大小,即概率的大小,为今后学习概率做铺垫;对于第6题可根据回答情况讲解.七、学习小结:师生共同回顾新知探究的整个过程,互相交流总结本节的知识点:(1)理解确定事件与不确定事件;(2)知道不确定事件发生的可能性有大有小;(3)合理运用所学知识分析解决相关问题.目的:锻炼学生的口头表达能力,体会学习的成果,感受成功的喜悦,增强学好数学的信心.(学生畅所欲言,教师给予鼓励)
一、教材分析1.教材的地位与作用本节课是在学生学习了三角形的基本概念后,引入图形的全等。这节课探究对象是生活中的常见全等图形,主要是探究全等图形的概念和特征,通过系列学习活动,引导学生体验数学与生活的密切联系,激发学生学习数学的兴趣,培养良好的学习品质。同时这节课的内容也是下一节学习全等三角以及三角形全等的判定的奠基石,它对知识的联系起到承上启下的作用。2.教学目标依据《课程标准》要求本阶段的学生应初步会运用数学的思维方式去观察、分析现实生活中出现的实际问题,体会数学与生活的密切联系,增进对数学的理解和学好数学的信心。因此我确立本节课的教学目标如下:知识技能目标:通过实例,使学生理解图形全等的概念,掌握全等图形的特征,能在不同的图形中识别出全等的图形过程与方法:通过观察,动手实验,培养学生动手操作能力、观察能力以及合作与交流的能力
练习3、先化简,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通过例题和联系将所学知识升华,提升)练习4、动动脑。(让学生进一步感知生活中处处有数学)(四)、畅谈收获、拓展升华1、本节课你学到了什么?依据是什么?整式的乘法存在什么没有解决的问题?(同桌互讲,师生共同小结)2、布置作业:习题1.9知识技能1四、说课小结本堂课我主要采用引导探索法教学,倡导学生自主学习、尝试学习、探究学习、合作交流学习,鼓励学生用所学的知识解决身边的问题,注重教学效果的有效性。学生在合作学习中,可以活跃课堂气氛,消除心理压力,在愉快的环境中学习知识,有效地拓展学生思维,成功地培养学生的观察能力、思维能力、合作探究能力、交流能力和数学学习能力。但由于本人对新课标和新教材的理解不一定十分到位,所以在教材本身内在规律的把握上,会存在一定的偏差;另外,由于对学生的认知规律认识不够,所以教学活动的设计不一定十分有效。所有这些都有待教学实践的检验。
[互动2]师:请大家从上面的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式?小组讨论之后再发表意见。生:第一步根据图象,确定这个函数是正比例函数或是一次函数;第二步设函数表达式;第三步:根据表达式列等式,若是正比例函数,只要找图象上一个点的坐标就可以了;若是一次函数,则需要找到图象上两个点的坐标,然后把点的坐标分别代入所设的解析式中,组成关于R、b的一个或两个方程。第四步:求出R、b的值第五步:把R、b的值代回到表达式中就可以了。师:分析得太好了。那么,大家说一说,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?要说明理由。生:确定正比例函数需要一个条件,而确定一次函数需要两个条件。原因是正比例函数的表达式:y=Rx(R≠0)中,只有一个系数R,而一次函数的表达式y=Rx+b(R≠0)中,有两个系数(待定)R和b。
二、教法分析为了让学生较好掌握本课内容,本节课主要采用观察法、讨论法等教学方法,通过创设情境,使学生由浅到深,由易到难分层次对本节课内容进行掌握。三、学法分析本课要求学生通过自主地观察、讨论、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。四、教学过程创设问题情景,引入新课活动内容:寻找不等的量 课本例一,例二设计目的:学生体会在现实生活中除了存在许多等量关系外,更多的是不等关系的存在,并通过感受生活中的大量不等关系,初步体会不等式是刻画量与量之间关系的重要数学模型。经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。课本例四,例五设计目的:培养学生数学抽象能力,提高把实际问题转化为数学问题的能力。六.课堂小结体会 常量与常量间的不等关系变量与常量间的不等关系变量与变量间的不等关系
设计意图:考虑学生的个别差异,分层次布置作业,让基础差的学生能够吃饱,基础好的学生吃好,使每位学生都感到学有所获。五、评价分析数学课程标准指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,而动手实践、自主探究与合作交流是学生学习数学的重要方式。本着这一理念,在本课的教学过程中,我严格遵循由感性到理性,将数学知识始终与现实生活中学生熟悉的实际问题相结合,不断提高他们应用数学方法分析问题、解决问题的能力。在重视课本基础知识的基础上,适当进行拓展延伸,培养学生的创新意识,同时根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识,而且注重学生对待学习的态度是否积极。课堂中也尽量给学生更多的空间、更多展示自我的机会,让学生在和谐的氛围中认识自我、找到自信、体验成功的乐趣。使学生的主体地位得到充分的体现,使教学过程成为一个在发现在创造的认知过程。
过程与方法:通过阅读保护听力的资料,了解我们的听力经常受到哪些伤害,知道保护听力的做法。情感、态度、价值观:认识到保护听力的重要性,养成良好的用耳习惯和在公共场所保持肃静的习惯。教学重点认识到保护听力的重要性教学难点知道各种控制噪音的方法教学准备发音罐、报纸、毛巾、棉花等
【学习目标】1.知识与技能:加深对燃烧条件的认识,进一步了解灭火的原理。2.过程与方法:体验实验探究的过程,学习利用实验探究的方法研究化学。3.情感态度与价值观:利用化学知识解释实际生活中的具体问题,使学生充分体会到化学来源于生活,服务于社会。【学习重点】通过物质燃烧条件的探究,学习利用控制变量的思想设计探究实验,说明探究实验的一般过程和方法。【学习难点】利用控制变量的思想设计对照实验进行物质燃烧条件的探究。【课前准备】《精英新课堂》:预习学生用书的“早预习先起步”。《名师测控》:预习赠送的《提分宝典》。情景导入 生成问题1.复习:什么叫燃烧?燃烧条件有哪些?今天自己设计实验来进行探究。2.明确实验目标,导入新课。合作探究 生成能力学生阅读课本P150的相关内容并掌握以下内容。实验用品:镊子、烧杯、坩埚钳、三脚架、薄铜片、酒精、棉花、乒乓球、滤纸、蜡烛。你还需要的实验用品:酒精灯、水。1.实验:用棉花分别蘸酒精和水,放到酒精灯火焰上加热片刻。上述实验中我们能观察到什么现象?说明燃烧需要什么条件?如果在酒精灯上加热时间较长,会发生什么现象?答:蘸酒精的棉花燃烧,蘸水的棉花没有燃烧,说明燃烧需要有可燃物。如果加热时间较长,水蒸发后,蘸水的棉花也会燃烧。2.如图所示,进行实验:我们能观察到什么现象?说明燃烧需要什么条件?答:在酒精灯火焰上加热乒乓球碎片和滤纸碎片,都能燃烧,说明二者都是可燃物。放在铜片两侧给它们加热后可看到乒乓球碎片先燃烧,说明燃烧需要温度达到可燃物的着火点。3.你能利用蜡烛和烧杯(或选择其他用品)设计一个简单实验证明燃烧需要氧气(或空气)吗?答:点燃两支相同的蜡烛,然后在一支蜡烛上扣住一只杯子,看到被杯子扣住的蜡烛一会儿就熄灭,说明燃烧的条件之一是需要氧气。
1.自己选择植物的花瓣(牵牛花、月季花)、蔬菜(紫卷心菜、胡萝卜) 在研钵中捣烂,加入酒精(它有消毒作用,可使制得的指示剂长期 保存)浸泡,用纱布将浸泡出的汁液过滤或挤出,就得到指示剂, 2.把制好的指示剂装入试剂瓶,贴上标签备用。 把食醋、稀盐酸、稀氢氧化钠、澄清石灰水,分别滴在两个 白色点滴板上,用石蕊、酚酞分别滴在上述溶液上,通过颜 色变化检验它们的酸碱性。 用玻璃棒分别蘸取上述溶液,滴在pH试纸上,然后对照标准 比色卡比较,得出pH值,也就是酸碱度。 把上述溶液滴在白色点滴板上,用滴管吸一下你自制的指示剂,滴在滴板的溶液里,观察颜色变化,每用一种指示剂,换一下滴板的溶液。 把所得到颜色变色变化的信息和pH值数据填入教材第70页的表中。 3.取少量土壤样品,将土壤样品与蒸馏水按1∶5的质量比在烧杯中混合, 充分搅拌后静置,用玻璃棒蘸澄清的液体,滴在pH试纸上,然后对照 标准比色卡记录读数。
审美鉴赏与创造——诗歌意象“诗是无声画”,诗要用形象说话。一般说来,诗歌写作是由“灵感—寻象—寻言”这三个阶段构成的。获得灵感,就是获得一种诗美体验;获得诗美体验之后,就要将诗美体验转化为诗歌意象。诗歌意象创作要注意以下几个方面:1.象征手法的运用。象征多用具体生动的形象来暗示某种生活、情绪和哲理,可以将抽象的事物变得具体可感。2.要善于将抽象的感情形象化。诗歌创作中,或是即事抒情,或是融情于景,或是托物言志,要尽力将情感形象化,避免单纯地抒情。3.意象的组合。意象组合是用一个接一个的意象,按照一定的美学原则把它组合起来,形成一幅幅跳跃的画面,使它们产生对比、衬托、联想、暗示等作用,让读者通过一系列的意象组合去揣摩和领悟作者的意图。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。