这是相隔两站的里程,相对问题1而言,难度有所增加。但数量关系不复杂,而此时学生已经有了问题1扎实的画图基础,所以我直接放手,让学生选择自己喜欢的方法画图,再算一算。3、会用图,能选择恰当的方法解决实际问题学习的最高境界是学以致用,画一画的目的是帮助自己解决问题,所以在学生初步掌握借助画图理解问题的基础上,我及时向学生提问,你还想求哪段,鼓励学生小组交流,并发现总结起点相同的里程问题的解决策略。在问题3时,我还是放手自主探究,因为有了前面的基础,此时,聪明的学生已经掌握了求两站之间的里程的方法,而接受能力稍微慢一点的学生通过画一画明确算式中相减的两个数量分别表示的哪一段路程,也能解答出来,这时再乘胜追击,鼓励学生说一个算式,让其他学生求的是哪两站之间的里程,这样的设计既巩固学习方法,又进行了开拓延展,可谓一举两得。本节课学生经历、感受着,借助画图分析问题、理解问题、解决问题的优越性。让学生在尝试、探索中发展了思维,提高了能力。
一、说教材1、教学内容北师大版小学数学五年级上册第五单元的第一课时《分数的再认识(一)》。2、教材分析本课是学生在三年级初步认识分数的基础上,进行深入和拓展的。在三年级,学生已结合情境和直观操作,体验了分数产生的过程,认识了整体“1”,初步了解了分数的意义,能认、读、写一些简单的分数。本节课是在此基础上,进一步引导学生认识和理解分数,为后面进一步学习、运用分数知识做好铺垫。本课的课题是《分数的再认识》,这个“再认识”,我想应该有两方面的含义,一是进一步认识、理解分数的意义,二是结合具体的情境,让学生体会“整体”与“部分”的关系,体会“整体不同,同一个分数所对应的数量也不同”,从而体验数学知识形成的全过程。3、教学目标根据教学内容和学生的认知能力,我将本节课的教学目标制定如下:
二、教学目标24时记时法与12时计时法的互换是本节课的一个教学难点,基于对教材的理解和学生的学习基础,特制定如下的教学目标;1、知识与技能:结合生活经验,明确12时计时法和认识24时记时法,使学生发现和理解24时记时法与12记时法之间的联系与区别。能够对两种记时法所表示的时刻进行换算。并能结合具体情境,推算出从一个时刻到另一个时刻所经过的时间。2、过程与方法:在活动中培养学生主动发现问题、探究问题、解决问题的能力。3、情感、态度与价值观:逐步养成遵守作息制度和珍惜时间的良好习惯,建立初步的时间观念。教具:多媒体课件、时钟三、重点难点教学重点:认识24时记时法,发现和理解24时记时法与普通记时法之间的联系与区别。教学难点:能正确地把24时记时法与12时记时法所表示的时刻进行相互转化。
本环节我依据教学目标和学生对知识的掌握情况,我设计了有针对性、层次分明的练习题(基本题、变式题、拓展题),让学生在解决这些问题的过程中,进一步理解,巩固新知,训练思维的灵活性,使学生的探索精神和实践能力得到进一步的提高。[本环节的设计意图:通过多层次的练习,激发学生的学习兴趣,调动学生学习的积极性和主动性,使学生获得愉悦的情感体验。同时使学生的知识结构更加完善。]第四环节:课堂小结在轻松愉快的学习活动结束后,我会与学生进行总结对话“这节课你有什么收获?你学会了什么?还有什么不懂得地方吗?”学生充分发言,交流自己的学习心得。[本环节的设计意图:帮助学生梳理知识,整理本课的知识要点,完成本节课的教学活动。]
在交流的过程中,教师要站在“导”的位置上,放手让学生说,最后总结出,解决这个问题,重点要理解问题的实质含义:究竟是谁和谁比,谁是单位“1”。本环节的设计既拓宽了解题思路,又锻炼了表达能力,同时也提高了抽象概括能力。(五)巩固拓展:实战演练,我最棒!在练习的设计上,我兼顾了习题的层次性和开放性,使不同层次的学生都参与练习,以求训练思维、培养能力、形成技能。(六)课堂总结通过学生说一说本节课自己的收获,达到对本节课知识点的梳理与整理,进一步巩固对知识点的掌握。总之,本节课教学活动我力求充分体现以下特点:以学生为主体,充分关注学生的自主探究与合作交流。教师是学生学习的组织者、引导者、合作者,对一个问题的解决不是要教师将现成的方法传授给学生,而是引导学生寻找解决问题的策略,给学生一把在知识的海洋中行舟的桨,让学生在积极思考,大胆尝试,主动探索中,获取成功并体验成功的喜悦。
[此环节的设计意图是利用情景激发学生探究的欲望,让学生带着轻松、愉悦的心情投入到新知的学习中。](二)自主探究感悟新知教育心理学告诉我们,学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。(在儿童的学习活动中,兴趣起着定向和动力功能的双重作用。)以这一理论为指导,我设计了以下三个层次渐深的活动,大胆放手让学生自主探究,从而突出重点、突破难点。活动一:理解分数乘整数的意义。让学生通过折一折的活动自主计算,并归纳整理出学生的三计算方法:①根据分数的意义数一数是3/5;②加法计算1/5+1/5+1/5=3/5;③乘法计算3*1/5=3/5,展示在黑板上,引导学生通过观察对比发现,其实3*1/5就是3个1/5相加,由此感知到分数乘整数的意义与整数乘法的意义相同,只是这里的相同加数变成了分数。
二、学情分析本单元是在学生已经学习了整数除法、分数乘法的基础上进行教学的,是小学阶段四则运算中最后一部分的内容。学生学习了整数、小数的四则运算,而分数只学习了加法、减法和乘法,因此对于学习分数除法有一定的认知需求,安排分数除法教学符合学生的认知发展特点。通过整数除法、分数乘法的学习,学生对计算的学习有一定的经验,并具有一定的解决问题的能力,这时候进行分数除法教学,学生有能力将原有的计算方法和经验进行迁移。学生在学习分数乘法时,已经掌握了一些解决分数乘法问题的方法,这时候进行分数除法教学可以促进知识之间的联系,提高学生分析问题和解决问题的能力。教师在教学时,应充分利用资源,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。三、教学目标根据新课标的要求和教材的特点,结合五年级学生的认知能力,本节课我确定如下的教学目标:
二、教法根据教材呈现的内容,我在开展教学活动时是从以下几个方面思考。1、出示情境图,鼓励学生分析情境中的数学信息和数量关系,明确所要解决的问题,然后了解要解决这个问题需要什么样的条件,进而列出算式。2、讨论具体的计算方法。教材中呈现了两种计算方法。在这个过程中,教师可以先让学生自主进行计算,再组织讨论和交流算法之间的联系,明白分数混合运算的顺序。3、对问题的解决加以解释,即航模小组有3人。三、学法通过本节教学,学生学会运用直观的教学手段理解掌握新知识,学会有顺序的观察题、认真审题、正确计算、概括总结、检查的学习习惯。四、教学程序(一)谈话设计意图:激发学生兴趣,调动学生学习的积极性。(二)复习旧知1、复习整数混合运算的顺序。
探索1:上节我们列出了与地毯的花边宽度有关的方程。地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花边的宽度x吗?(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
三、课堂检测:(一)、判断题(是一无二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a为常数) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空题.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次项是__________,一次项是__________,常数项是__________.2.如果方程ax2+5=(x+2)(x-1)是关于x的一元二次方程,则a__________.3.关于x的方程(m-4)x2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程。四、学习体会:五、课后作业
教学目标:1.知道二次函数与一元二次方程的联系,提高综合解决问题的能力.2.会求抛物线与坐标轴交点坐标,会结合函数图象求方程的根.教学重点:二次函数与一元二次方程的联系.预设难点:用二次函数与一元二次方程的关系综合解题.☆ 预习导航 ☆一、链接:1.画一次函数y=2x-3的图象并回答下列问题(1)求直线y=2x-3与x轴的交点坐标; (2)解方程2x-3=0(3)说出直线y=2x-3与x轴交点的横坐标和方程根的关系2.不解方程3x2-2x+4=0,此方程有 个根。二、导读画二次函数y= x2-5x+4的图象1.观察图象,抛物线与x轴的交点坐标是什么?2.求一元二次方程x2-5x+4=0的解。3.抛物线与x轴交点的横坐标与一元二次方程x2-5x+4=0的解有什么关系?(3)一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.二次函数y=ax2+bx+c的图象与x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?
四、稳态的重要意义 为什么内环境稳态失调后,会对机体造成危害?引导学生从细胞代谢需要的物质和条件进行分析,最后总结出:内环境稳态是机体进行正常生命活动的必要条件。如何预防内环境稳态失调、保持机体健康?引导学生从外界环境和机体自身调节能力两个方面去思考。即通过加强自我保健,减少外界环境变化对机体的不良影响,同时增强机体的调节能力以适应多变的外界环境。具体如何做?学生讨论,总结。1.保护我们的生存环境,防治环境污染。2.加强体育锻炼,增强体质,提高机体适应外界环境的能力。3.加强自我保健,为机体保持健康创造有利条件。尤其是处于比较恶劣的工作环境中的人,更应注意自身保健,如边防战士注意保暖、炼钢工人注意降温、抗洪战士注意补充水盐等。了解这些知识后才能懂得如何关爱自身和他人。
3、总结(这部分要5分钟)学生在教师的提示和问题的引导下,完成对本节课的知识的归纳和小结。利用简炼、清晰的语言,再一次的突出本节课的重点,起到画龙点睛的作用,培养了学生的表达能力。4、巩固练习(这部分要10分钟)用大屏幕投影把题目投影在屏幕上,让学生思考,然后回答。这部分安排10分钟的时间,让学生思考完成具有针对性的练习,进行知识巩固和教学效果反馈,及时纠正错误的理解和片面的认识。5、板书设计在板书中,我根据板书的“规范、工整和美观”的要求,结合所学的内容,设计了如图所示的板书。在其中,注重了重、难点的突出,使学生对知识的结构、层次、重点、难点一目了然,便于记忆和理解。四、效果分析对于反射的判断,学生仍有可能出现错误,如刺激坐骨神经肌肉的收缩,教师应强调没有完整的反射弧结构参与的不是反射。
(5)根据实验的第五部分——验证性实验结果,证实了达尔文关于植物向光性运动原因的假说――确实存在一种物质致使胚芽尖端产生了向光运动。这样通过多个实验的多媒体演示过程,强化学生的思维,最终在学生的大脑中形成科学研究过程的”条件反射”。为了使学生初步学会”设计对照实验的方法”,首先也利用多媒体的演示实验,并在其中特意设置一些”陷阱”,通过多次”请学生进入‘陷阱’”,来强化设计实验时应该控制的变量问题,从而在学生的认知领域里初步构建出设计对照实验的知识体系。3、归纳总结1934年,荷兰科学家郭葛等人从植物中分离出了这种能使植物产生向光性的物质,并确定它就是吲哚乙酸。这就真正从化学物质的角度证实了达尔文的假设。在能够从植物体中分离提取出生长素之后,要想知道:除了能使植物产生向光运动之外,生长素对于植物的器官还有什么作用?可以采用哪种方法来进行试验?
第二环节合作讨论,获得新的知识展示图片,一块草地上的全部蒲公英,估算所有蒲公英的数量,引出种群密度的概念。回到问题即调查蒲公英的种群密度,教师启发,学生阅读教材讨论总结说出样方法,以问题承接“一片草地上的所有山羊”怎么知道其种群密度,激起学生认知冲突,进一步思考讨论,得出标志重捕法,教师引导学生完成标志重捕法的概念、操作过程,计算公式,并与样方法进行比较。教师陈述“种群密度是种群最基本的数量特征,反应种群在一定时期的数量,不能反应种群的变化趋势”引出反映种群变化趋势的其他特征——出生率和死亡率,迁入和迁出,年龄组成和性别比例。学生讨论总结这些特征的概念、对种群密度的影响及对生产生活实践的指导意义。使学生认同计划生育国策,关注濒危动物的种群数量变化。之后引导学生构建种群特征的关系图。再简明阐述种群空间特征即:随即分布,均匀分布、集群分布。第三环节反馈练习,巩固新知识通过对学生练习结果的评价,了解学生对知识的掌握情况。即以学生为核心的教学评价。
展示学习过的物理学内容:伽利略的“比萨斜塔”实验,证明了:两个铁球同时落地。得出结论:实践是检验认识正确与否的唯一标准。(因为这点理解起来有点难,所一教师要适当的讲解)A、一种认识是否是真理不能由这一认识本身回答B、客观事物自身也不能回答认识是否正确地反映了它C、实践是联系主观与客观的桥梁。人们把认识和实践的结果对照,相符合,认识就正确。○4实践是认识的目的和归宿:走进社会:(课本P46归国博士案例)从这个故事中我们可以得到什么启示?得出结论:实践是认识的归宿和目的。启发学生学以致用,eg:纪中的学生研究地沟油简易检测方法(灵活利用身边的教学资源)。【板书设计】实践是认识的基础(板书)投影:逐步展示本课知识结构图。学生通过回忆,让学生有直观的认识,学习内容一目了然。1.实践是认识的来源。2.实践是认识发展的动力。3.实践是检验认识的真理性的唯一标准。
2、讲授新课:(35分钟)通过教材第一目的讲解,让学生明白,生活和学习中有许多蕴涵哲学道理的故事,表明哲学并不神秘总结并过渡:生活也离不开哲学,哲学可以是我正确看待自然、人生、和社会的发展,从而指导人们正确的认识和改造世界。整个过程将伴随着多媒体影像资料和生生对话讨论以提高学生的积极性。3、课堂反馈,知识迁移。最后对本科课进行小结,巩固重点难点,将本课的哲学知识迁移到与生活相关的例子,实现对知识的升华以及学生的再次创新;可使学生更深刻地理解重点和难点,为下一框学习做好准备。4、板书设计我采用直观板书的方法,对本课的知识网络在多媒体上进行展示。尽可能的简洁,清晰。使学生对知识框架一目了然,帮助学生构建本课的知识结构。5、布置作业我会留适当的自测题及教学案例让同学们做课后练习和思考,检验学生对本课重点的掌握以及对难点的理解。并及时反馈。对学生在理解中仍有困难的知识点,我会在以后的教学中予以疏导。
五.说教学过程:(重点)1.课题引入:课堂探究导入新课。采用教材现成的探究活动导入新课,既“温故”又“知新”,还节约了课堂有效时间。2.讲授新课:(20-25分钟)本课的重难点是关于哲学基本问题的解释,我引用一个很著名的学生也略知一二的唯心主义观点的例子(课堂探究1)顺利进入本课重要知识点的学习,采用案例教学,激发学生的兴趣以及探究问题的欲望,学习哲学基本问题的第一个方面,并用问题和练习形式巩固知识,强化学生易错已混知识点;课堂探究2,同样引用哲学上的著名案例让学生分析探究思考以及合作交流,学生趣味浓厚,主动深入学习本课知识,达到预期教学目的。此时,本课的重点知识教学完成。关于本课的第二个知识点“为什么思维和存在的关系问题是哲学的基本问题”采用学生自主阅读、合作交流的方法,归纳总结,完成本知识目标。3.课堂反馈、知识迁移(10-15分钟)采用学生总结、随堂练习等形式巩固本课知识,同时检验教学效果。可使学生更深刻的理解教学重点。
学生回答:推动社会发展的矛盾是:生产力和生产关系的矛盾,经济基础和上层建筑的矛盾。问题:你知道人类社会存在和发展的基础吗?学生回答,步步深入。社会发展的规律是生产关系一定要适合生产力发展的规律,上层建筑一定要适合经济基础状况的规律。你是如何理解这两个规律的?请举例说明。那么你是如何理解这一规律的,请举例说明学生阅读教材第二目,并举例说明。培养学生自我学习能力。教师归纳:总结生产力和生产关系、经济基础和上层建筑的辩证关系原理。过渡:我们掌握了社会发展的规律,那么同学们来说一下,社会发展呈什么趋势?这一趋势怎么实现的?社会矛盾的解决方式有几种,为什么会有这么的区别,我们国家的矛盾解决靠什么方式来完成?学生阅读教材第三目,学生分组合作探究,交流发言。设计意图:提升推导能力,引导深化认识。教师归纳总结:社会历史发展的总趋势是前进的、上升的,发展的过程是曲折的。
教师活动:那种“选举与我无关”,“选谁都可以”的想法,是公民意识不强、主人翁意识不强的表现。那么,怎样才能行使好自己的选举权呢?请同学们根据上面的学习,谈谈自己的想法。学生活动:思考讨论教师点评:2、 如何行使好自己的选举权(1)要不断提高自己参与民主选举的素养,端正参加选举的态度,提高选举能力,选出切实能代表人民利益的人。(2)要增强主人翁责任感和公民参与意识,积极参加选举,认真行使自己的选举权。(3)要不断提高政治参与能力,在理性判断基础上,郑重投出自己的一票。(三)课堂总结、点评本节内容讲述了我国的选举方式以及如何珍惜自己的选举权利的有关知识,懂得我国是人民民主专政的社会主义国家,人民当家作主,应该增强主人翁责任感,自觉珍惜并运用好选举权,以促进我国的民主政治建设,维护人民的根本利益。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。