XX——XX第一学期第四周国旗下讲话稿:创新放飞梦想科技引领未来老师们、同学们:早上好!今天我讲话的题目是《创新放飞梦想科技引领未来》。科技的发展是一个社会的标志、一种文明的象征。蒸汽机的出现标志了工业社会的到来,半导体的出现又将人类带入了电子时代,计算机的广泛应用与互联网的诞生更是标志着人类步入了一个崭新的信息时代。科技给了人类社会无比强大的推动力。谈到科技,人们可能首先会想到人造地球卫星、登月宇宙飞船、原子弹等这些似乎离我们遥不可及的事物上,她往往给人以高高在上的感觉,实际上,科学技术的日新月异,使得科学不只为尖端技术服务
②.通过“由文字语言到符号语言”再“由符号语言到文字语言”让学生从正反两方面双向建构.突破难点策略:①.分三步分散难点:引入时大量的实际情景,让学生体会到代数式存在的普遍性;让学生给自己构造的一些简单代数式赋予实际意义,进一步体会代数式的模型思想;通过“主题研究”等环节进一步提高解决实际问题的能力.②.适时安排小组合作与交流,使学生在倾听、质疑、说服、推广的过程中得到“同化”和“顺应”,直至豁然开朗,突破思维的瓶颈.2.生成预设为生成服务,本案编代数式、主题研究等环节的设计为学生精彩的生成提供了很好的平台,在实际教学过程中,教师要注重生成信息的捕捉,善于发现学生思维的亮点,及时进行引导和激励,并根据具体教学对象,适当调整教与学,使教学过程真正成为生成教育智慧和增强实践能力的过程.让预设与生成齐飞.
方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.问:此题目还可以 如何画出图形?作法二 :(1)在四边形ABCD外任取一点 O;(2)过点O分别作射线OA, OB, OC,OD;(3)分别在射线OA, OB, OC, OD的反向延长线上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′ C′、C′D′、D′A′,得到所 要画的四边形A′B′C′D′,如图3. 作法三:(1)在四边形ABCD内任取一点O;(2)过点O分别作 射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A′B′、B′C ′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)三、课堂练习 活动3 教材习题小结:谈谈你这节课学习的收获.
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。
①分别连接OA,OB,OC,OD,OE;②分别在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③顺次连接A′B′,B′C′,C′D′,D′E′,E′A′.五边形A′B′C′D′E′就是所求作的五边形;(3)画法如下:①分别连接AO,BO,CO,DO,EO,FO并延长;②分别在AO,BO,CO,DO,EO,FO的延长线上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③顺次连接A′B′,B′C′,C′D′,D′E′,E′F′,F′A′.六边形A′B′C′D′E′F′就是所求作的六边形.方法总结:(1)画位似图形时,要注意相似比,即分清楚是已知原图与新图的相似比,还是新图与原图的相似比.(2)画位似图形的关键是画出图形中顶点的对应点.画图的方法大致有两种:一是每对对应点都在位似中心的同侧;二是每对对应点都在位似中心的两侧.(3)若没有指定位似中心的位置,则画图时位似中心的取法有多种,对画图而言,以多边形的一个顶点为位似中心时,画图最简便.三、板书设计
课堂教学设计说明前一节课学生通过推导,已初步理解和掌握了乘法分配律,但要使学生切实理解乘法分配律,必须经过反复地练习,本节课就是解决如何应用乘法分配律使计算简便,在应用的过程中,进一步加深对乘法分配律的理解.新课分为两部分.第一部分通过师生对出题,激发学生积极性,为应用乘法分配律做铺垫.第二部分是教学例6,用简便方法计算,通过老师的启发,学生经过观察,讨论找出题目的特点,总结出简便运算的方法.本节课的练习分两个层次.一个层次是讲中练,边讲边练,并在练习中不断变换题目形式,提高学生灵活运用运算定律的能力.第二个层次是总结性的综合练习.通过师生对出题使学生深刻理解乘法分配律的内涵,抓住关键,进行简算;同时对不符合乘法分配律的题目,经过讨论,修正过来,使学生对运算规律理解得更透彻.
探究点二:列分式方程某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得20x+10x+4=15.故选A.方法总结:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.三、板书设计1.分式方程的概念2.列分式方程本课时的教学以学生自主探究为主,通过参与学习的过程,让学生感受知识的形成与应用的价值,增强学习的自觉性,体验类比学习思想的重要性,然后结合生活实际,发现数学知识在生活中的广泛应用,感受数学之美.
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
国旗下的讲话:拒绝溺爱自强自立十几个青葱岁月悄然逝去,我们已从呱呱坠地的婴孩变成了成熟的男生女生。回忆童年生活的点滴,我们是幸福的,因为我们是在爱的滋养下成长的。从出生伊始,我们生活的周围便被家人的关心和爱护环绕。正因为他们爱我们,所以不忍心让我们受一点儿伤害,他们把风雨扛在了肩上,而把绚烂的彩虹留给我们。可也正因为这种爱,让我们终究是要长大的,总有一天,我们会离开为我们遮风挡雨的父母,独自一个人去面对未来,那时没有人会像家人那样不计回报地付出,视我们如生命。那时的我们必须靠自己,所以从现在开始,我们要拒绝溺爱,学会自强自立。那怎样才能做到自强自立呢?我觉得一个人要自强首先要自立,只要我们真正自立了,那么也就自然而然学会自强了,但要做到真正意义上的自立,要从以下三个方面开始:一、心理上的独立。一个人真正强大的其实是他的心灵。在人生的旅途中,我们会遇到很多的挫折和失败,也很容易被外物影响。但是只要我们不变初心,用一种积极向上的心态,微笑着去面对生活,把每一次的挫折打击都归结为一次尝试,不去自卑,弹奏从容的弦乐,去面对挫折,去接受幸福,去品味孤独,去沐浴忧伤,去迎接一次又一次的挑战,让我们的心灵日渐充盈
第一篇:国旗下的讲话:人生应自信、自强矫健的苍鹰扇动着双翅,翱翔在高空,无畏的目光点亮前进的道路,寻找自己的天堂。它自信,得到诗人的讴歌;它自强,受到英雄的敬仰。苍鹰尚且如此,满腔热血的我们又该如何主宰自己的人生呢?生活中有这样一个故事:一位中国留学生以优异的成绩考入了美国一所著名的大学。怀揣着梦想,他告别了父母,远离了家乡。但是,入学不久,他就提出了退学。理由很简单:生活饮食不习惯,父母所给的生活费已经花完。回到家乡的机场,迎接他的是年近花甲的父亲,当他看到久违的父亲就高兴的扑过去,父亲一腿部,儿子扑了个空,一个趔趄摔倒在地。父亲看着尴尬的儿子深情的说:“孩子,这个世界上没有任何人可以做你的靠山,你若想在激烈的竞争中立于不败之地,任何时候都不能丧失那个叫自立、自信、自强的生命支点,一切全靠你自己。”说完,父亲塞给儿子一张返程机票。这位学生没跨进家门就直接登上了返回美国的航班,返校不久,他获得了学院里的最高奖学金,且有数篇论文陆续发表在有国际影响的刊物上。
“幸好!”妈妈笑道,“走出五里路我就哭了,一哭哭了几百里……”常乐想问为什么,忽然响起一片古怪的声音。满池塘都在怪叫。常乐像皮球一样弹到妈妈怀里,大叫:“水里有怪物!”
予谓菊,花之隐逸者也;牡丹,花之富贵者也;莲,花之君子者也。噫!菊之爱,陶后鲜有闻。莲之爱,同予者何人?牡丹之爱,宜乎众矣。
一只蜉蝣从水里一点一点钻出来。远远的天边,一个红红的家伙一点一点冒上来。蜉蝣高兴地和它打招呼:“你好,你很神奇呀,你一来世界就亮了。”“你好,小蜉蝣。”“你认识我?你是谁呀?”“我是太阳。”“太阳,我好快乐呀,我有一天的生命,你和我一样吗?”
落地已是半夜,打开手机,收到太太发来的视频,录的是她跟儿子的对话。先从那幅画的构思说起。为什么把自己画成一个胖子?想让自己吃得壮壮的,好打篮球。为什么把衣服都涂成黄色?喜欢黄颜色啊。
儿童在教育过程中的成长,一定意义上就是在重演人类的发展史。我们的祖先通过劳动实现了人类文明的提升,由此我们每个人,特别是我们在儿童阶段的成长,都离不开劳动环节的淬炼。
父亲越来越老了,雪后的山路上,他再也不能健步如飞了。妻子说,年前我们干脆抽两天时间回去看看吧!回去那天,父亲正坐在火塘边,望着树上的橘子发呆,看到我们,父亲一愣,随即便孩子般叫着母亲的名字。
鱼,我所欲也;熊掌,亦我所欲也。二者不可得兼,舍鱼而取熊掌者也。生,亦我所欲也;义,亦我所欲也。二者不可得兼,舍生而取义者也。生亦我所欲,所欲有甚于生者,故不为苟得也
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。