刚升中班幼儿可能会对调色活动本身感兴趣,他们的兴趣只是停留在操作上。所以本活动的主要是为幼儿提供观察、探索的机会,让幼儿在主动活动中使用颜色,同时充分感受颜色的丰富性。使幼儿的兴趣转移到对活动中出现的科学现象的兴趣上,从而引发进一步探索的愿望。因此我选择了科学活动:《会变的颜色》这节课。
在幼儿进行实验的时候,大部分孩子都能够认真的去寻找反作用力,只有极个别孩子只对某一样东西感兴趣,所以就不太主动的去进行其他的探索实验,根据这个情况,我对这样的孩子也进行了正确的引导,在实验结束的时候,大部分孩子都能够在不同的物体中找到反作用力。 我上的这节课是科学活动《火箭升空》这是整合课程《交通工具博览会》主题中的一个活动。 下面我先说一下这节课的活动目标: 1、拓展幼儿的想像力及对科学的探索能力。 2、尝试了解火箭升空的动力。 3、初步了解反作用力。 首先,我说一下这节课的设计意图,在《交通工具博览会》主题活动中,我们班的孩子对于火箭都非常好奇,感兴趣,平时提到火箭孩子们也都很兴奋,他们虽然知道火箭,喜欢火箭,但是火箭对于他们来说具体是一个什么样的概念,他们还不是很了解。
二、说活动目标: 根据中班幼儿的年龄特点,和建构知识的能力我为本次活动制定了如下三条目标:1、运用各种感官感知泡泡的特性,了解不同形状的工具吹出的泡泡都是圆的。2、尝试运用记录的方式表达、交流探索的过程和结果,发展学习的自主性。3、在探究活动过程中,体验发现的乐趣。三、说活动重点、难点: 此次活动设计的最终目的是激发幼儿更深层的探究“泡泡特性以及不同形状的工具吹出的泡泡都是圆的”欲望。因此我将本次活动的重点确定为“运用各种感官感知泡泡的特性,了解不同形状的工具吹出的泡泡都是圆的”。将“尝试运用记录的方式表达、交流探索的过程和结果,发展学习的自主性”确定为本次活动的难点。
我上的这节课是科学活动《火箭升空》这是整合课程《交通工具博览会》主题中的一个活动。 下面我先说一下这节课的活动目标:1、拓展幼儿的想像力及对科学的探索能力。2、尝试了解火箭升空的动力。3、初步了解反作用力。 首先,我说一下这节课的设计意图,在《交通工具博览会》主题活动中,我们班的孩子对于火箭都非常好奇,感兴趣,平时提到火箭孩子们也都很兴奋,他们虽然知道火箭,喜欢火箭,但是火箭对于他们来说具体是一个什么样的概念,他们还不是很了解。 这也正是《纲要》中所提出的:从生活或媒体以及幼儿熟悉的科技成果入手,引导幼儿感受科学技术对生活的影响,培养他们对科学的兴趣,和对科学家的崇敬,所以我就抓住了孩子们的这个兴趣点,来设计了《火箭升空》这节课。
一、说教材:刚升中班幼儿可能会对调色活动本身感兴趣,他们的兴趣只是停留在操作上。所以本活动的主要是为幼儿提供观察、探索的机会,让幼儿在主动活动中使用颜色,同时充分感受颜色的丰富性。使幼儿的兴趣转移到对活动中出现的科学现象的兴趣上,从而引发进一步探索的愿望。因此我选择了科学活动:《会变的颜色》这节课。二、说教学目的:1、通过引导幼儿自己动手做实验,发现颜色的奇妙变化,激发幼儿对调色的兴趣。2、在示范的基础上,教幼儿学念儿歌,理解儿歌内容,并引导幼儿进行一定的创编。
创设情景 兴趣导入问题 观察钟表,如果当前的时间是2点,那么时针走过12个小时后,显示的时间是多少呢?再经过12个小时后,显示的时间是多少呢?.解决每间隔12小时,当前时间2点重复出现.推广类似这样的周期现象还有哪些? 动脑思考 探索新知概念 对于函数,如果存在一个不为零的常数,当取定义域内的每一个值时,都有,并且等式成立,那么,函数叫做周期函数,常数叫做这个函数的一个周期. 由于正弦函数的定义域是实数集R,对,恒有,并且,因此正弦函数是周期函数,并且 ,, ,及,,都是它的周期.通常把周期中最小的正数叫做最小正周期,简称周期,仍用表示.今后我们所研究的函数周期,都是指最小正周期.因此,正弦函数的周期是.
这个故事叙述了老鼠三兄弟看到鼠妹妹穿着破衣服就悄悄地让裁缝把漂亮的布做成了女式服装这样一件事,非常温馨和感人。故事所表达的精神对道德意识还往往处于自我中心的当今的独生子女应该具有较强的心灵震动。这一形象对中班幼儿来讲是能够接受和体验的,有利于培养他们正确的道德态度和良好的道德情感。容易引起幼儿的学习兴趣,又可以扩展孩子的词汇量。其二是现在的孩子由于受生活环境限制,缺乏与周围人相处的经验,普遍存在对周围事物缺乏感情的行为,所以这一内容既符合中班幼儿的年龄特点,又符合孩子的现实需要。整篇童话语言通俗,主题单纯,充满生活情趣。更巧妙的是:作者设置了一个悬念“你给我做……”做什么呢?作者没有直接把三兄弟让裁缝做女式服装的对话告诉幼儿,这留给幼儿一个想象、思考的空间。中班幼儿有意注意开始发展,复杂句发展较快,词汇增加,能用完整、较连贯的语言表达自己想说的事,喜欢欣赏不同形式的文学作品,理解作品的人物形象,用恰当的语言、动作、绘画形式表现自己对作品的理解和体验,扩展想象,尝试创编。希望通过这个故事来提高幼儿对文学作品的感受和表现能力,并寻求不同角度的思维方式。鼓励幼儿能大胆地想象,表现自己的情感。
活动中合作目标的设计,是以中班孩子年龄特点为依据的。中班孩子的同伴关系已经冲破了亲子、师生等关系的局限,开始向同龄人关系过渡,他们需要去分工、合作,共同完成任务,从而体验合作的愉悦。而幼儿与同伴之间的合作意识却是中班孩子所缺少的,因此在这次活动中,我特意强化了这方面的渗透和引导。如在“两人三足”中两名幼儿的腿绑在一起要同时走动,他们必须得随着身体的逐渐协调一致,才能合作完成任务,体验合作活动的快乐。之后,在不断加快的速度中,在游戏的快乐气氛中,幼儿的互助、合作能力则得到了再一次凸显。“两人三足”是一种民间体育游戏,因此,本次活动开始部分就以民间音乐为背景,以两人合作并配以儿歌的民间游戏“拍手游戏歌”导入,创设了具有民间特色的游戏氛围。“两人三足”是一种控制性较强的合作游戏,有较高平衡、协调的要求,这里选用双人合作游戏“拍手游戏歌”作为前奏,既集中了幼儿的注意力,调动了大脑皮层的兴奋性,使身体各器官快速进入状态,又为基本部分的合作、协调作了专门准备。
二、说活动教材 这个故事叙述了老鼠三兄弟看到鼠妹妹穿着破衣服就悄悄地让裁缝把漂亮的布做成了女式服装这样一件事,非常温馨和感人。故事所表达的精神对道德意识还往往处于自我中心的当今的独生子女应该具有较强的心灵震动。这一形象对中班幼儿来讲是能够接受和体验的,有利于培养他们正确的道德态度和良好的道德情感。容易引起幼儿的学习兴趣,又可以扩展孩子的词汇量。其二是现在的孩子由于受生活环境限制,缺乏与周围人相处的经验,普遍存在对周围事物缺乏感情的行为,所以这一内容既符合中班幼儿的年龄特点,又符合孩子的现实需要。 整篇童话语言通俗,主题单纯,充满生活情趣。更巧妙的是:作者设置了一个悬念“你给我做……”做什么呢?作者没有直接把三兄弟让裁缝做女式服装的对话告诉幼儿,这留给幼儿一个想像、思考的空间。
活动中合作目标的设计,是以中班孩子年龄特点为依据的。中班孩子的同伴关系已经冲破了亲子、师生等关系的局限,开始向同龄人关系过渡,他们需要去分工、合作,共同完成任务,从而体验合作的愉悦。而幼儿与同伴之间的合作意识却是中班孩子所缺少的,因此在这次活动中,我特意强化了这方面的渗透和引导。如在“两人三足”中两名幼儿的腿绑在一起要同时走动,他们必须得随着身体的逐渐协调一致,才能合作完成任务,体验合作活动的快乐。之后,在不断加快的速度中,在游戏的快乐气氛中,幼儿的互助、合作能力则得到了再一次凸显。 “两人三足”是一种民间体育游戏,因此,本次活动开始部分就以民间音乐为背景,以两人合作并配以儿歌的民间游戏“拍手游戏歌”导入,创设了具有民间特色的游戏氛围。“两人三足”是一种控制性较强的合作游戏,有较高平衡、协调的要求,这里选用双人合作游戏“拍手游戏歌”作为前奏,既集中了幼儿的注意力,调动了大脑皮层的兴奋性,使身体各器官快速进入状态,又为基本部分的合作、协调作了专门准备。
2、发展幼儿的观察力和灵敏的思维能力。 [活动准备]1、教具⑴教学课件(第一幅图出现10个小数字人物化舞蹈的情形,第二副至最后一幅依次出现1-10 ,每幅画出现一个数字)⑵1——10的数字头饰。⑶用废旧的纸盒做立体的小火车一列(要有10个车厢,并且把10个数字依次贴在车厢上)10种不同水果的卡片各一张。2、学具 幼儿每人一支胶棒,一套10种不同水果的卡片各一套,1—10数字卡片各一套,一列平面的地小火车(10节车厢,在每节车厢上刻一条缝,让幼儿能把水果卡片插进去)
2,学习用数字表示物体的数量。二,活动准备:橘子园背景图;幼儿操作材料。一,活动过程:(一)认识数字31,出示果园图:今天我们去参观橘子园。问:你看到了什么?有几棵橘子树?幼儿随意观察图片,(互相交流讨论。)
教学目标(一)教学知识点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.(二)能力训练要求发展学生的数学应用意识和解决问题的能力.(三)情感与价值观要求1.在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气. 2.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.教具重点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索——发现法教具准备多媒体演示
问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因为NE=AC=a,所以MN=ME+EN=l·tanα+a.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
《用尺规作三角形》是北师大版《义务教育课程标准实验教科书.数学》七年级下册第五章第五节的内容。在之前的学习中,我们已经学会用尺规作线段和角,而边和角是三角形的基本元素,这节课主要是学习利用尺规按要求做三角形,表面上看是操作的过程,但教科书中提出了有关探究性问题,目的是引导学生关注作图背后的数学思考,即用尺规作三角形用到了两个三角形全等的条件,因此本课教学应引导学生积极思考,使学生体会到作图的每一步骤都是有根 有 据的.二、教学目标分析参照《课程标准》的要求及教材的特点,考虑到学生已有的认知结构和心理特征 ,我制定了如下教学目标:1、知识与技能:1.会用尺规按要求作三角形:已知三边作三角形,已知两角及夹边作三角形,已知两边及夹角作三角形.2.会写出三角形的已知、求作、作法. 3.能对新作三角形给出合理的解释.
一、说教材:等腰三角形是北师大版初中八年级下册数学教材第一章第一节的教学内容,本节是轴对称图形的应用,是研究等腰三角形的开篇。通过本章节的学习,可以丰富和加深学生对已学图形的认识,为以后的图形学习和证明打好基础。本节在编排上考虑学生的认知规律,从学生容易接受的动手操作找规律开始到几何画板的验证再过渡到几何证明与应用。根据课程标准,确定本节课的目标为:【教学目标】1.知识与能力 理解并掌握等腰三角形的定义,探索等腰三角形的性质;能够用等腰三角形的知识解决相应的数学问题.2.过程与方法通过动手操作、动态演示等方法,培养学生思考探究数学的能力;通过例题与练习,提高学生添加辅助线解决问题的能力。3.情感、态度与价值观 在探索等腰三角形性质的过程中体会轴对称图形的美,感受数学与生活的联系;在例题教学中,感受数学之美;培养学生分析解决问题的能力,使学生养成良好的学习习惯.
2)、能正确认读数字1、2、3、4。 活动准备:教师幼儿每人一套1~4的数字卡,四个指偶;1~4的圆点卡片每人一套. 活动过程:1)、引起兴趣,导入课题:出示指偶,引起兴趣。 2)、有具体形象到抽象训练:让幼儿操作指偶,复习4以内数的形成,正确认读数字1、2、3、4。 A 、让幼儿出示1个指偶,启发幼儿说出1个指偶的数量用数字“1”来表示,老师出示数字“1”,让幼儿说出像什么并认读。