2、运用挂图和课件,初步理解并形成“半个月”的时间概念。 3、萌发对月相变化现象的好奇心和探究欲望,感受半个月里月亮形状变化的过程。 【活动准备】 1、兔妈妈和小兔玩偶、课件、单月的日历一张。 2、律动《月亮婆婆喜欢我》 3、《望着月亮吃大饼》故事挂图 【活动过程】 1、谈话导入,激发幼儿的兴趣。 “小朋友,今天我们班来了两位小客人,是谁呀?”(出示玩偶)“打个招呼吧!”“兔公公家盖房子,兔妈妈要去帮忙,小兔只能在家里等妈妈,它会怎么等妈妈呢?”(鼓励幼儿根据自己的想法大胆讲述)“平时,你的妈妈不在家,你会怎样等妈妈呢?” 2、教师完整讲述故事,幼儿欣赏,初步了解半个月的时间概念。 “小兔子怎样等妈妈呢?请听故事《望着月亮吃大饼》。”教师:“兔妈妈要多长时间才回来呢?你们知道半个月时间有多长呢?”(教师出示日历:我们一起来数一数日历,就知道半个月有多长了)除了用数日历的方法,兔妈妈还告诉小兔一个什么好办法呢?
二、 生成过程:1、 了解幼儿对哈气的已有经验:老师:为什么玻璃上能画画。幼儿兴奋地讨论着。嘉文:玻璃上有哈气。子萧:玻璃上有一层雾可以在雾上画画。王月恒:还有水珠留下来呢。(大多数孩子的已有经验就是哈气,但是哈气是什么,是怎样产生的?孩子不了解。我给孩子提出任务:寻找有关哈气产生原因,引导幼儿进行大胆的探索,并能主动相互交流。)2、 试验、探索:幼儿通过协商后共同分为三组进行试验,他们各自到自己感兴趣的组搜集有关材料。第一组的幼儿找来镜子、玻璃、和一杯水,把玻璃盖在杯子上,过了一会儿玻璃没有一点变化,孩子们纷纷议论没有产生哈气的原因。王子萧说:哈气是热气遇到冷空气才产生的,我们用热水试一试。孩子们从保温桶里接了温水,又从暖瓶里接了开水,分别把镜子、玻璃、放在两别水上。不一会儿工夫镜子、玻璃上发上了变化,嘉文急忙说:“你们快看,温水的镜子上有哈气,热水的玻璃上开始有哈气,一会儿就有水珠流下来了。“其他小朋友也分别交流自己的发现,并把实验结果用图画的形式表征下来。案,体现了《纲要》的指导思想让幼儿在活动中主动学
2、探索复制指纹的方法,萌发多样探索的意识。3、初步激发对科学、创造和探索自身的兴趣。材料环境创设:数字卡片、小纸片、颜料、印泥、橡皮泥、镜子、抹布等。设计思路:“我们的身体”是本班幼儿正在探索的主题活动,在探索小手的活动中,罗宜家提出了这样一个问题:“手指上的线叫什么呀?”但是,小朋友谁都说不上来。这是一个颇具价值的问题,因为它是我们在主题活动中生成的,有利于孩子们继续对自身进行探索的兴趣的培养。而且,现代的指纹技术正越来越与高科技融为一体,涉及到了很多方面,适当地在这方面丰富一些见识,不仅能开阔幼儿的眼界,且对于幼儿的科学探究兴趣也会有好处。另外,作为一个新班,我们的孩子们在探索能力上还显得很单一,缺乏运用多种方式探索的意识,本活动中鼓励幼儿大胆常识多种复制指纹的方法,对幼儿的多样化探索意识也是有帮助的。活动中,处于整合性原则,我还在其中,融合了识数教育,即观察时给手指纹编号,结合一切可利用因素进行自然衔接下的教育。拓展内化观察比较操作体验提问交流流程:1、提问交流:1)请罗宜家提出自己原先的问题。
2、学会主动关心照顾小树或大树。3、学会做观察记录。4、复习12以内的点数。5、认读树名。 活动准备:1、课前对园区树木进行观察,不同树上都挂有树牌(树的名称、树龄及生活习性)及编号(以便幼儿记录)。2、彩笔、图画纸、铅笔。3、幼儿卡(幼儿姓名、性别、年龄)。4、小桶。
我们美丽的上海建筑中,“桥”无疑也是一个亮点,他为我们生活带来了方便,在前一活动“各种各样的桥”中,他们对桥已有了初步的认识,知道桥的基本组成部分,同时通过资料的收集及调查,也发现了桥的多样性,特殊性,更是对造桥的工作者产生的敬佩之情,因此孩子们把该经验及体验延伸到了本体性游戏的建构活动中,各个都想来造桥。为了更好的满足他们的需要,及爱探究的愿望,我提供了丰富的材料,让孩子们在自己的探索过程中尝试造桥,并在桥上载物,同时也根据他们的年龄特点出发,我还在该活动中提供了记录表,在边记录边探索中当一回小小造桥者。 活动目标:1.尝试利用替代物来构建纸桥。2. 探索使桥面牢固的方法,并进行记录。活动准备:替代物若干(如:厚薄不一的纸、积木、纸杯、书、纸盒、塑料瓶等)记录表笔桥的图片若干前期经验准备:观察并讨论过桥,对桥的功用及种类有所认识
2、探索锁的秘密,了解锁的作用,知道锁的重要。3、对观察和动手活动感兴趣,有强烈的探索欲望。活动准备:1、操作卡人手一份。2、收集各种各样的锁和钥匙。活动过程:一、提问引出话题:1、出示锁和钥匙:今天,老师带什么到幼儿园来了?小朋友也准备了各种各样的锁和钥匙,你带来的锁和钥匙是什么样子的?你想玩一玩吗?2、幼儿自由玩锁
1.认知目标:通过引导幼儿自己动手做实验,从而知道两种颜色加到一起会变成别的颜色。初步培养幼儿的兼容性、发散性和跨越性。2.情感目标:通过在活动中,引导幼儿仔细观察,鼓励幼儿大胆尝试记录实验结果。初步培养幼儿好奇心、冒险性。3.人格目标:通过让幼儿让孩子在活动中团结友爱体验创造的喜悦。培养幼儿团结友爱、自信大胆。4.动作技能目标:通过引导幼儿自己动手做实验,发展幼儿大小肌肉动作。活动准备:1. 物质准备:A.一瓶黄颜色的水。B.每组三个透明的小缸,分别装有红、黄、蓝色三种颜色、及棉签等C.记录材料每组一份,涂色纸若干。D.魔术师帽子。
2. 在探究的过程中学会从多角度解决问题。3. 学习运用比较的方法在操作中发现问题、获取经验。活动准备:两块大小一样的冰块,托盘,每人一块冰(里面冻有一个小礼物)记录卡每人一张,笔,毛巾,缸子,热水,温水,凉水,棉被,酒精灯,小锤等工具。活动过程:1. 引发问题,激发幼儿探索的欲望。(1)用什么方法能让冰块慢点化?师:小朋友们你们看老师这有一块冰,我不想让这块冰融化,请小朋友们帮老师想想办法。
2. 锻炼动作的灵活性和身体的协调性。 3. 感受模仿游戏和体育活动的愉快。 二、教学准备: 布袋每人一个;挂有“桑叶”的皮筋四根; 作为奖励物品的小亮片,舒缓、激烈的音乐各一段, 三、教学过程: (一)开始,热身运动 1.放音乐,引导幼儿做身体模仿动作 头部——上肢——腰部——全身(蹲起或伸展)——团身滚——放松 2.教师提醒幼儿找个空位置,重点进行伸展和团身的准备动作
一、导入新课教养,是表现在行为方式中的道德修养状况,是社会影响、家庭教育、学校教育、个人修养的结果。中国是文明古国,礼仪之邦,关于“教养”,中国古时《三字经》就提到了,指的是人从小就应该习得的一种规矩,待人接物处事时的一种敬重态度。今天我们学习利哈乔夫的《论教养》,进一步理解教养的核心内涵以及学习如何做一个有教养的人。【教学提示】设计学生感兴趣的话题,引发学生的思考和关注,为学生更好地学习本文奠定基础。二、教学新课目标导学一:初读课文,理清层次1.指导学生朗读课文。朗读指导:抓住议论性的句子,把握作者的观点,理解观点和材料之间的关系。2.小组讨论。给课文划分层次,理清作者思路,理解议论文结构的一般特点。明确:第一部分(1—2):开门见山,引入论题——良好的教养。第二部分(3—12):把有无教养的表现进行对比,指出教养的思想核心是尊重他人。第三部分(13—17):剖析优雅风度,指出一切优雅风度的基础其实是一种关照态度。
[活动目标]1、鼓励幼儿在生活中做一个善于观察的有心人。2、进一步培养幼儿的语言表达能力、观察能力、思维想象力和分析能力。3、帮助幼儿认识生活中的一些常见标志,懂得基本的安全知识,提高自我保护能力。[活动准备]1、请家长协助带孩子在生活中观察常见的安全标志。2、各种标志、图片若干。3、布置好的“安全标志图片展览”4、音乐磁带。[活动过程] 一、教师组织幼儿在音乐声中进入活动室,并参观布置好的“安全标志图片展览”幼儿边看边说说自己认识哪些标志,它们有什么意义。(评析:幼儿在音乐声中进入活动,会有一个轻松愉快的开始,为活动打好铺垫。参观图片展,能给幼儿一个整体的印象,他们在看看说说的过程中,会互相学习,这也体现了纲要中提到的“注重幼儿间的相互作用”)
6. 例二:如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上的一点,且PA=AC,求二面角P-BC-A的大小. 解:由已知PA⊥平面ABC,BC在平面ABC内∴PA⊥BC∵AB是⊙O的直径,且点C在圆周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC内,∴BC⊥平面PAC又PC在平面PAC内,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定义一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直,平面α与β垂直,记作α⊥β8. 探究:建筑工人在砌墙时,常用铅锤来检测所砌的墙面与地面是否垂直,如果系有铅锤的细绳紧贴墙面,工人师傅被认为墙面垂直于地面,否则他就认为墙面不垂直于地面,这种方法说明了什么道理?
问题二:上述问题中,甲、乙的平均数、中位数、众数相同,但二者的射击成绩存在差异,那么,如何度量这种差异呢?我们可以利用极差进行度量。根据上述数据计算得:甲的极差=10-4=6 乙的极差=9-5=4极差在一定程度上刻画了数据的离散程度。由极差发现甲的成绩波动范围比乙的大。但由于极差只使用了数据中最大、最小两个值的信息,所含的信息量很少。也就是说,极差度量出的差异误差较大。问题三:你还能想出其他刻画数据离散程度的办法吗?我们知道,如果射击的成绩很稳定,那么大多数的射击成绩离平均成绩不会太远;相反,如果射击的成绩波动幅度很大,那么大多数的射击成绩离平均成绩会比较远。因此,我们可以通过这两组射击成绩与它们的平均成绩的“平均距离”来度量成绩的波动幅度。
新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。
9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
1.直观图:表示空间几何图形的平面图形,叫做空间图形的直观图直观图往往与立体图形的真实形状不完全相同,直观图通常是在平行投影下得到的平面图形2.给出直观图的画法斜二侧画法观察:矩形窗户在阳光照射下留在地面上的影子是什么形状?眺望远处成块的农田,矩形的农田在我们眼里又是什么形状呢?3. 给出斜二测具体步骤(1)在已知图形中取互相垂直的X轴Y轴,两轴相交于O,画直观图时,把他们画成对应的X'轴与Y'轴,两轴交于O'。且使∠X'O'Y'=45°(或135°)。他们确定的平面表示水平面。(2)已知图形中平行于X轴或y轴的线段,在直观图中分别画成平行于X'轴或y'轴的线段。(3)已知图形中平行于X轴的线段,在直观图中保持原长度不变,平行于Y轴的线段,在直观图中长度为原来一半。4.对斜二测方法进行举例:对于平面多边形,我们常用斜二测画法画出他们的直观图。如图 A'B'C'D'就是利用斜二测画出的水平放置的正方形ABCD的直观图。其中横向线段A'B'=AB,C'D'=CD;纵向线段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,这与我们的直观观察是一致的。5.例一:用斜二测画法画水平放置的六边形的直观图(1)在六边形ABCDEF中,取AD所在直线为X轴,对称轴MN所在直线为Y轴,两轴交于O',使∠X'oy'=45°(2)以o'为中心,在X'上取A'D'=AD,在y'轴上取M'N'=½MN。以点N为中心,画B'C'平行于X'轴,并且等于BC;再以M'为中心,画E'F'平行于X‘轴并且等于EF。 (3)连接A'B',C'D',E'F',F'A',并擦去辅助线x轴y轴,便获得正六边形ABCDEF水平放置的直观图A'B'C'D'E'F' 6. 平面图形的斜二测画法(1)建两个坐标系,注意斜坐标系夹角为45°或135°;(2)与坐标轴平行或重合的线段保持平行或重合;(3)水平线段等长,竖直线段减半;(4)整理.简言之:“横不变,竖减半,平行、重合不改变。”
1.探究:根据基本事实的推论2,3,过两条平行直线或两条相交直线,有且只有一个平面,由此可以想到,如果一个平面内有两条相交或平行直线都与另一个平面平行,是否就能使这两个平面平行?如图(1),a和b分别是矩形硬纸板的两条对边所在直线,它们都和桌面平行,那么硬纸板和桌面平行吗?如图(2),c和d分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺与桌面平行吗?2.如果一个平面内有两条平行直线与另一个平面平行,这两个平面不一定平行。我们借助长方体模型来说明。如图,在平面A’ADD’内画一条与AA’平行的直线EF,显然AA’与EF都平行于平面DD’CC’,但这两条平行直线所在平面AA’DD’与平面DD’CC’相交。3.如果一个平面内有两条相交直线与另一个平面平行,这两个平面是平行的,如图,平面ABCD内两条相交直线A’C’,B’D’平行。
1.圆柱、圆锥、圆台的表面积与多面体的表面积一样,圆柱、圆锥、圆台的表面积也是围成它的各个面的面积和。利用圆柱、圆锥、圆台的展开图如图,可以得到它们的表面积公式:2.思考1:圆柱、圆锥、圆台的表面积之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?3.练习一圆柱的一个底面积是S,侧面展开图是一个正方体,那么这个圆柱的侧面积是( )A 4πS B 2πS C πS D 4.练习二:如图所示,在边长为4的正三角形ABC中,E,F分别是AB,AC的中点,D为BC的中点,H,G分别是BD,CD的中点,若将正三角形ABC绕AD旋转180°,求阴影部分形成的几何体的表面积.5. 圆柱、圆锥、圆台的体积对于柱体、锥体、台体的体积公式的认识(1)等底、等高的两个柱体的体积相同.(2)等底、等高的圆锥和圆柱的体积之间的关系可以通过实验得出,等底、等高的圆柱的体积是圆锥的体积的3倍.
新知探究:向量的减法运算定义问题四:你能根据实数的减法运算定义向量的减法运算吗?由两个向量和的定义已知 即任意向量与其相反向量的和是零向量。求两个向量差的运算叫做向量的减法。我们看到,向量的减法可以转化为向量的加法来进行:减去一个向量相当于加上这个向量的相反向量。即新知探究(二):向量减法的作图方法知识探究(三):向量减法的几何意义问题六:根据问题五,思考一下向量减法的几何意义是什么?问题七:非零共线向量怎样做减法运算? 问题八:非零共线向量怎样做减法运算?1.共线同向2.共线反向小试牛刀判一判(正确的打“√”,错误的打“×”)(1)两个向量的差仍是一个向量。 (√ )(2)向量的减法实质上是向量的加法的逆运算. ( √ )(3)向量a与向量b的差与向量b与向量a的差互为相反向量。 ( √ )(4)相反向量是共线向量。 ( √ )
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.③符号语言:任意a?α,都有l⊥a?l⊥α.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。