面对困难重重而勇往直前奋斗的是民族精神;面对死亡的威胁自强不息英勇就义的是民族精神;面对凌辱祖国的列强,挺身而出、维护祖国尊严的,还是民族精神。民族精神,它是世界的最高峰,向下方眺望。它看到了祖国雄壮美丽的大好河山,看到了这片土地上勤劳的中国人……此时,它虽然身在寒冷的峰顶,但它心里却有一颗炽热的太阳为它驱赶寒冷。但是,当它看到人面兽心的侵略者残忍地杀害无辜的百姓,一股憎恨在心底油然而生,就仿佛凶猛的列焰在心头焚烧,久久不息。望长江黄河浩荡东流去,抚敌垒炮台默默耸天立。江山千秋永在,英烈风范长存,从太军倒下的第一排勇士,到百万雄师过大江献出年轻生命的战士;从罗霄山脉战死的大将,到抗日战胜和大决战中英勇献身的官兵,他们有没有留下名字的,还有的没墓场和石碑。然而“青山处处埋忠骨”,他们的英灵与江河同在,与日月同辉!
水是生命之源,是人类生存离不开的宝贵资源。科学家曾做过这样一个试验:假如一个人不吃任何食物,生命可以维持二十多天,而若是不喝水,过不了一个星期就可能死亡。对于地球上的所有生灵来说,离开了水就意味着疾病、饥饿和死亡。上有天堂,下有苏杭,因为苏州有秀美的山峰与一碧千里太湖之水而被冠以天堂之城的美誉。东山,一座三面环山环水的古朴小镇,更是被誉为天堂中的天堂。多少年来,太湖水哺育了千千万万的东山人。记得老师小时候所喝的水是直接从太湖中提取加热的,可现在,我们所喝的水虽然也来自太湖,可是却经过了许多道工序的处理,静心一闻,还能闻到漂白粉的味道。这是因为我们赖以生存的太湖水已经被污染了。超负荷养殖、污水排放、太湖旅游的过渡开发,在人们感受到眼前的利益的同时,也在破坏子孙后代的生存环境。去年,大规模的无锡蓝藻爆发,已经给人们敲响了环保的警钟。为了更好的保护太湖水,我们东山实小的全体师生积极行动起来,在3月10日进行了“认捐花白鲢,洁净母亲湖”捐款仪式。捐款活动虽然已经结束,但我们保护太湖水,洁净太湖水的行动将一直延续下去。
今天我讲话的题目是《关注饮食安全,共创健康生活》。常言道:民以食为天,食以安为先。食品安全是生命健康最有力的保证。近日我们有些同学为贪图便宜、方便,或因为挑食,喜欢在路边摊点就餐,殊不知这是在拿健康甚至生命在开玩笑。路边摊点多采用的是“地沟油”,里面包含很多致癌物质。而且一般小贩未做过健康体检,没有卫生许可证,其中有些人可能就是肝炎等病源的携带者和传播者。因此,学校提倡同学们在食堂就餐,或在家吃饭,养成良好的饮食习惯,避免食物中毒事故的发生。同时希望同学们不吃生冷食物,保证营养均衡,把自己的身体吃得棒棒的。
同学们,听说过《两袖清风》这个成语故事吗?这个成语故事说的是明朝正统年间,宦官王振以权谋私,每逢朝会,各地官僚为了讨好他,都献以珠宝白银,巡抚于谦每次进京奏事,总是不带任何礼品。他的同僚劝他说:“你虽然不献金宝、攀求权贵,也应该带一些著名的土特产如线香、蘑菇、手帕等物,送点人情呀!”于谦笑着举起两袖,风趣地说:“带有清风!”以示对那些阿谀奉承之贪官的嘲弄。两袖清风的成语从此便流传下来。古往今来,有多少清正廉洁、务实为民的清官受到百姓的崇敬与爱戴,他们的形象深入人心,他们的故事久久传颂。一代清官包公、海瑞的故事热映荧屏,久演不衰;人民公仆孔繁森、牛玉儒、任长霞的事迹震撼人心,影响甚广。是的,无论历史如何变迁,无论时代怎样发展,廉洁永远是时代的呼唤,廉洁永远是人民的期盼。
因徐校长退休,上个星期我来到了学校,又成为了东山实验小学的一员,担任校长工作。我姓吴,以后大家可以叫我吴校长或吴老师。在13年前,我就是我们学校的数学老师。在这里我工作了整整20年,我的儿子也是在本校毕业。这是一所了不起的小学,是XX省首批办好的老牌实验小学,也是XX省“模范学校”。这是一所办学近200年的学校,多少年来为中学输送了一批批优秀的毕业生,为生国家培养了一大批优秀的人才,院士、科学家等数以百计。我的儿子后来也考取了北京大学,现在国家公派在国外留学。我说儿子并不是自我夸耀,而是想告诉同学们一点,能在东山实验小学学习与工作是幸福的、光荣的。因为,东山实验小学有一个个关爱你们,为同学们的获得良好的学习成长、优良的品德形成,健康的身心发展的敬业、爱岗、乐于奉献的老师。在此我建议,让我们用最热烈的掌声向老师们表示最衷心的感谢!
同志们:今天我们召开集团公司一季度经营工作例会暨资金调度会,主要任务是总结分析集团公司今年以来的经济运行情况,查摆存在的问题及不足,提出具体解决措施,研究部署下一阶段工作,为今后各项工作的开展打下坚实基础。刚才,各子公司分别汇报了今年以来的生产经营情况,各分管领导也针对各子公司存在问题提出了具体的意见,很有针对性和指导性,大家回去之后要认真贯彻落实。针对此次会议内容,我再提几点意见:一、铆足干劲、奋力冲刺,力争完成第一季度经营指标*-*月份,集团公司实现营业收入*亿元,完成年度计划的*%,同比下降*%;利润总额*亿元,完成年度计划的*%,同比增长*%;归母净利润*亿元,完成年度计划的*%,同比增长*%;资产总额*亿元,较年初下降*%;资产负债率*%,较年初下降*个百分点。从经营数据来看,集团公司想要完成第一季度的经营指标以及全年的经营指标,任务还是比较艰巨的。比如利润方面**板块占比很高,如果单靠贸易和生产,是没办法实现利润目标的,大家要看到核心问题所在。时间也过得很快,转眼间*月份已经过了一周了,我们一定要增强紧迫感和危机感,铆足干劲,加足马力,奋力冲刺,抱着分秒必争的决心和毅力去干,才有可能完成好年初制定的任务目标。
第一条 本合同双方当事人: 中华人民共和国 省(自治区、直辖市) 市(县)土地管理局(以下简称甲方),法定地址 ;邮政编码 ;法定代表人:姓名 ;职务 。 (以下简称乙方),法定地址 ;邮政编码 ;法定代表人:姓名 ;职务 。根据中华人民共和国关于外商投资企业用地管理法律、法规和国家有关规定,双方通过友好协商订立本合同。 第二条 甲方提供给乙方使用的国有土地位于 ,面积为 平方米。其位置与四至范围如本合同附图所示。附图已经甲、乙双方确认。 第三条 本合同项下的土地使用年限为 年,自本合同签字之日起算。 第四条 乙方同意向甲方支付场地使用费,包括土地开发费和土地使用费。 〔或:第四条 依据合资或合作企业合同,由乙方中的 (注:中方合资者或合作者)向甲方支付场地使用费,包括土地开发费和土地使用费。〕 第五条 土地开发费为每平方米 元人民币,总额为 元人民币。乙方(或中方合资者或合作者)须于本合同签字之日起 日内全部付清。
本节通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.数学学科素养1.数学抽象:建立函数模型,把实际应用问题转化为数学问题;2.逻辑推理:通过数据分析,确定合适的函数模型;3.数学运算:解答数学问题,求得结果;4.数据分析:把数学结果转译成具体问题的结论,做出解答;5.数学建模:借助函数模型,利用函数的思想解决现实生活中的实际问题.重点:利用函数模型解决实际问题;难点:数模型的构造与对数据的处理.
【例3】本例中“p是q的充分不必要条件”改为“p是q的必要不充分条件”,其他条件不变,试求m的取值范围.【答案】见解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因为p是q的必要不充分条件,所以q?p,且p?/q.则{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范围是(0,3].解题技巧:(利用充分、必要、充分必要条件的关系求参数范围)(1)化简p、q两命题,(2)根据p与q的关系(充分、必要、充要条件)转化为集合间的关系,(3)利用集合间的关系建立不等关系,(4)求解参数范围.跟踪训练三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要条件,求实数a的取值范围.【答案】见解析【解析】因为“x∈P”是x∈Q的必要条件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范围是[-1,5].五、课堂小结让学生总结本节课所学主要知识及解题技巧
本课是高中数学第一章第4节,充要条件是中学数学中最重要的数学概念之一, 它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.A.正确理解充分不必要条件、必要不充分条件、充要条件的概念;B.会判断命题的充分条件、必要条件、充要条件.C.通过学习,使学生明白对条件的判定应该归结为判断命题的真假.D.在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.
本节课在已学幂函数、指数函数、对数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反应.而本节课重在研究不同函数增长的差异.课程目标1.掌握常见增长函数的定义、图象、性质,并体会其增长的快慢.2.理解直线上升、对数增长、指数爆炸的含义以及三种函数模型的性质的比较,培养数学建模和数学运算等核心素养.数学学科素养1.数学抽象:常见增长函数的定义、图象、性质;2.逻辑推理:三种函数的增长速度比较;3.数学运算:由函数图像求函数解析式;4.数据分析:由图象判断指数函数、对数函数和幂函数;5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结函数性质.重点:比较函数值得大小;难点:几种增长函数模型的应用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.3节《不同增长函数的差异》 是在学习了指数函数、对数函数和幂函数之后的对函数学习的一次梳理和总结。本节提出函数增长快慢的问题,通过函数图像及三个函数的性质,完成函数增长快慢的认识。既是对三种函数学习的总结,也为后续导数的学习做了铺垫。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1.了解指数函数、对数函数、幂函数 (一次函数) 的增长差异.2、经过探究对函数的图像观察,理解对数增长、直线上升、指数爆炸。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;3、在认识函数增长差异的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学。 a.数学抽象:函数增长快慢的认识;b.逻辑推理:由特殊到一般的推理;
等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小. 3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》。对数函数是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、理解对数函数的定义,会求对数函数的定义域;2、了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。3、在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣。
对数函数与指数函数是相通的,本节在已经学习指数函数的基础上通过实例总结归纳对数函数的概念,通过函数的形式与特征解决一些与对数函数有关的问题.课程目标1、通过实际问题了解对数函数的实际背景;2、掌握对数函数的概念,并会判断一些函数是否是对数函数. 数学学科素养1.数学抽象:对数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用对数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结对数函数概念.重点:理解对数函数的概念和意义;难点:理解对数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。
本节课选自《普通高中课程标准实验教科书数学必修1》5.6.2节 函数y=Asin(ωx+φ)的图象通过图象变换,揭示参数φ、ω、A变化时对函数图象的形状和位置的影响。通过引导学生对函数y=sinx到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂、由特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法;通过对参数φ、ω、A的分类讨论,让学生深刻认识图象变换与函数解析式变换的内在联系。通过图象变换和“五点”作图法,正确找出函数y=sinx到y=Asin(ωx+φ)的图象变换规律,这也是本节课的重点所在。提高学生的推理能力。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。
本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.课程目标 学科素养A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.数学抽象:函数解析法及能由条件求函数的解析式;2.逻辑推理:求函数的解析式;
课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。