提供各类精美PPT模板下载
当前位置:首页 > Word模板 > 教育教学 > 课件教案> 人教A版高中数学必修一充分条件与必要条件教学设计(1)
  • 收藏模板
    下载模板
  • 模板信息
  • 更新时间:2023-10-21
  • 字数:约4249字
  • 页数:约7页
  • 格式:.docx
  • 推荐版本:Office2016及以上版本
  • 售价:5 金币 / 会员免费

您可能喜欢的文档

  • 人教A版高中数学必修一充分条件与必要条件教学设计(2)

    人教A版高中数学必修一充分条件与必要条件教学设计(2)

    【例3】本例中“p是q的充分不必要条件”改为“p是q的必要不充分条件”,其他条件不变,试求m的取值范围.【答案】见解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因为p是q的必要不充分条件,所以q?p,且p?/q.则{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0

  • 人教版高中数学选修3条件概率教学设计

    人教版高中数学选修3条件概率教学设计

    (2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.

  • 人教A版高中数学必修一对数的运算教学设计(1)

    人教A版高中数学必修一对数的运算教学设计(1)

    本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.3.2节《对数的运算》。其核心是弄清楚对数的定义,掌握对数的运算性质,理解它的关键就是通过实例使学生认识对数式与指数式的关系,分析得出对数的概念及对数式与指数式的 互化,通过实例推导对数的运算性质。由于它还与后续很多内容,比如对数函数及其性质,这也是高考必考内容之一,所以在本学科有着很重要的地位。解决重点的关键是抓住对数的概念、并让学生掌握对数式与指数式的互化;通过实例推导对数的运算性质,让学生准确地运用对数运算性质进行运算,学会运用换底公式。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。1、理解对数的概念,能进行指数式与对数式的互化;2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。

  • 人教A版高中数学必修一诱导公式教学设计(1)

    人教A版高中数学必修一诱导公式教学设计(1)

    一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)

  • 人教A版高中数学必修一任意角教学设计(1)

    人教A版高中数学必修一任意角教学设计(1)

    本节课选自《普通高中课程标准数学教科书-必修一》(人 教A版)第五章《三角函数》,本节课是第1课时,本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示法。树立运动变化的观点,并由此进一步理解推广后的角的概念。教学方法可以选用讨论法,通过实际问题,如时针与分针、体操等等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。A.了解任意角的概念;B.掌握正角、负角、零角及象限角的定义,理解任意角的概念;C.掌握终边相同的角的表示方法;D.会判断角所在的象限。 1.数学抽象:角的概念;2.逻辑推理:象限角的表示;3.数学运算:判断角所在象限;4.直观想象:从特殊到一般的数学思想方法;

  • 查看更多相关Word文档

充分条件与必要条件教学设计(1)

本课是高中数学第一章第4节,充要条件是中学数学中最重要的数学概念之一, 它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。

从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.

课件教案

“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.

课程目标

学科素养

A.正确理解充分不必要条件、必要不充分条件、充要条件的概念;

B.会判断命题的充分条件、必要条件、充要条件.

C.通过学习,使学生明白对条件的判定应该归结为判断命题的真假.

D.在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.

1.数学抽象:充分条件、必要条件、充要条件的含义;

2.逻辑推理:判断命题的充分条件、必要条件、充要条件;

3..直观想象:对条件的判定应该归结为判断命题的真假。

1.教学重点:理解充分条件、必要条件、充要条件的意义,掌握命题条件的充要性判断及其证明方法;

2.教学难点:命题条件充要性的判断及其证明。

多媒体

教学过程

落实核心素养目标

一、情景引入,温故知新

情景1:如图所示电路中(整个电路及灯泡一切正常),

记p:闭合开关A, q:灯泡亮。

请把这个电路图改写为“若p,则q”形式的命题并判断真假。

【答案】真命题

情景2:记p:x >2, q:x >0 。

判断命题“若x >2 ,则 x >0”的真假。

【答案】真命题

二、探索新知

探究一 充分条件与必要条件的含义

1.思考:下列“若P,则q”形式的命题中,哪些是真命题?哪些是假命题?

(1)若平行四边形的对角线互相垂直,则这个平行四边形是菱形;

(2)若两个三角形的周长相等,则这两个三角形全等;

(3)若

(4)若平面内两条直线a和b均垂直于直线l,则a//b。

【答案】(1)真 (2)假 (3) 假 (4)真

2、归纳新知

(1)充分条件、必要条件的含义

一般地,用p、q分别表示两个命题,如果命题p成立,可以推出命题q也成立,即,那么p叫做q的充分条件, p叫做q的必要条件.

P足以导致q,也就是说条件p充分了;

q是p成立所必须具备的前提.

(2)

3.思考:下列“若P,则q”形式的命题中,p是q的什么条件?

(1)若平行四边形的对角线互相垂直,则这个平行四边形是菱形;

(2)若两个三角形的周长相等,则这两个三角形全等;

(3)若

(4)若平面内两条直线a和b均垂直于直线l,则a//b。

【解析】(1)、(4)中,p是q的充分条件,q是p的必要条件;(2)、(3)中, p不是q的充分条件,q不是p的必要条件

【解析】(1)这是一条平行四边形的判定定理,, 所以p是q的充分条件;

(2)这是一条相似三角形的判定定理,,所以p是q的充分条件;

(3)这是一条菱形的性质定理,,所以p是q的充分条件;

(4)由于, 所以p不是q的充分条件。

(5)由等式的性质知,,所以p是q的充分条件。

(6)为无理数,但为有理数,,所以p不是q的充分条件。

4、思考:例1中命题(1)给出了“四边形是平行四边形”的一个充分条件,这样的充分条件唯一吗?若不唯一,那么你能给出不同的充分条件吗?

【解析】四边形的两组对边分别相等,四边形的一组对边平行且相等,四边形的两条对角线互相平分都是其充分条件。

结论:一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件。

解:(1)这是一条平行四边形的性质定理,,所以q是p的必要条件;

(2)这是一条相似三角形的性质定理,,所以q是p的必要条件;

(3)如图,四边形ABCD的对角线互相垂直,但它不是菱形,所以q不是p的必要条件;

(4)显然, 所以q不是p的必要条件。

(5)由于 所以q不是p的必要条件;

(6)为无理数,但1,不全是无理数,,所以q不是p的必要条件。

思考:例2中命题(1)给出了“四边形是平行四边形”的一个必要条件,这样的必要条件唯一吗?若不唯一,你能给出几个其它的必要条件吗?

【解析】四边形的两组对边分别相等,四边形的一组对边平行且相等,四边形的两条对角线互相平分都是其必要条件。

【结论】一般地,数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件。

探究二 充要条件的含义

1.思考:下列“若P,则q”形式的命题中,哪些命题与它们的逆命题都是真命题?

(1)若两个三角形的两角和其中一角所对的边分别相等,则这两个三角形全等;

(2)若两个三角形全等,则这两个三角形的周长相等;

(3)若一元二次方程有两个不相等的实数根,则。

(4)若是空集,则A与B均是空集。

【解析】命题(1)、(4)与它们的逆命题都是真命题。

2.定义:一般地,如果既有,又有,就记作:, 这时p既是q的充分条件,又是q的必要条件,则p是q的充分必要条件,简称充要条件。其中叫做等价符号。。

例3 下列各题中,哪些p是q的充要条件?

(1)p:四边形是正方形,q:四边形的对角线互相垂直且平分;

(2)P:两个三角形相似,q:两个三角形三边成比例;

(3)p:xy>0,q:x>0,y>0;

(4) p:x=1是一元二次方程的一个根,q:。

解:(1)因为对角线互相垂直平分的四边形不一定是正方形,所以,所以p不是q的充要条件。

(2)因为“若p,则q”是相似三角形的性质定理,“若q,则p”是相似三角形的判定定理,所以它们均是真命题,即,所以P是q的充要条件。

(3)因为xy>0时,x>0,y>0不一定成立,所以 ,所以p不是q的充要条件。

(4)因为“若p,则q”与“若q,则p”均为真命题,即,

所以P是q的充要条件。

3.探究:通过上面的学习,你能给出“四边形是平行四边形”的充要条件吗?

【解析】四边形的两组对角分别相等、四边形的两组对边分别相等、四边形的一组对边平行且相等、四边形的对角线互相平分、四边形的两组对边分别平行都是它的充要条件。

例4 已知:⊙O的半径为r,圆心O到直线L的距离为d。求证:d=r是直线l与⊙O相切的充要条件。

解析:设:,:直线与⊙O相切。要证是的充要条件,只需证明充分性()和必要性()即可。

解:教材P22

点评:在处理充分和必要条件问题时,首先应分清条件和结论,然后才能进行推理和判断。

通过初中所学及实例,让学生感知、了解,进而概括出充分条件与必要条件的含义。提高学生用数学抽象的思维方式思考并解决问题的能力。

通过命题真假的判定,归纳出充分条件、必要条件的含义。

通过思考,进一步理解充分条件、必要条件的含义,教会学生解决和研究问题。

通过例题进一步巩固充分条件的含义,提高学生解决问题的能力。

通过思考理解充分条件的不唯一。

通过例题进一步巩固必要条件的含义,提高学生解决问题的能力。

通过思考理解必要条件的不唯一。

通过判断命题及其逆命题的真假,概括归纳充要条件的定义,提高学生的抽象概括能力。

提高例题进一步巩固充要条件。

通过思考理解充要条件的不唯一。

提高例题掌握充要条件的证明方法,提高学生解决问题的能力。去体验知识方法。发现并提出数学问题,应用数学语言予以表达。


最新课件教案文档
  • 精选高中生期末评语

    精选高中生期末评语

    1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。

  • 公司2024第一季度意识形态工作联席会议总结

    公司2024第一季度意识形态工作联席会议总结

    一是要把好正确导向。严格落实主体责任,逐条逐项细化任务,层层传导压力。要抓实思想引领,把理论学习贯穿始终,全身心投入主题教育当中;把理论学习、调查研究、推动发展、检视整改等有机融合、一体推进;坚持学思用贯通、知信行统一,努力在以学铸魂、以学增智、以学正风、以学促干方面取得实实在在的成效。更加深刻领会到******主义思想的科学体系、核心要义、实践要求,进一步坚定了理想信念,锤炼了政治品格,增强了工作本领,要自觉运用的创新理论研究新情况、解决新问题,为西北矿业高质量发展作出贡献。二是要加强应急处事能力。认真组织开展好各类理论宣讲和文化活动,发挥好基层ys*t阵地作用,加强分析预警和应对处置能力,提高发现力、研判力、处置力,起到稳定和引导作用。要坚决唱响主旋律,为“打造陕甘片区高质量发展标杆矿井”、建设“七个一流”能源集团和“精优智特”新淄矿营造良好的舆论氛围。三是加强舆情的搜集及应对。加强职工群众热点问题的舆论引导,做好舆情的收集、分析和研判,把握时、度、效,重视网上和网下舆情应对。

  • 关于2024年上半年工作总结和下半年工作计划

    关于2024年上半年工作总结和下半年工作计划

    二是深耕意识形态。加强意识形态、网络舆论阵地建设和管理,把握重大时间节点,科学分析研判意识形态领域情况,旗帜鲜明反对和抵制各种错误观点,有效防范处置风险隐患。积极响应和高效落实上级党委的决策部署,确保执行不偏向、不变通、不走样。(二)全面深化党的组织建设,锻造坚强有力的基层党组织。一是提高基层党组织建设力量。压实党建责任,从政治高度检视分析党建工作短板弱项,有针对性提出改进工作的思路和办法。持续优化党建考核评价体系。二是纵深推进基层党建,打造坚强战斗堡垒。创新实施党建工作模式,继续打造党建品牌,抓实“五强五化”党组织创建,广泛开展党员教育学习活动,以实际行动推动党建工作和经营发展目标同向、部署同步、工作同力。三是加强高素质专业化党员队伍管理。配齐配强支部党务工作者,把党务工作岗位作为培养锻炼干部的重要平台。

  • XX区民政局党支部开展主题教育工作情况总结报告

    XX区民政局党支部开展主题教育工作情况总结报告

    二要专注于解决问题。根据市委促进经济转型的总要求,聚焦“四个经济”和“双中心”的建设,深入了解基层科技工作、学术交流、组织建设等方面的实际情况,全面了解群众的真实需求,解决相关问题,并针对科技工作中存在的问题,采取实际措施,推动问题的实际解决。三要专注于急难愁盼问题。优化“民声热线”,推动解决一系列基层民生问题,努力将“民声热线”打造成主题教育的关键工具和展示平台。目前,“民声热线”已回应了群众的8个政策问题,并成功解决其中7个问题,真正使人民群众感受到了实质性的变化和效果。接下来,我局将继续深入学习主题教育的精神,借鉴其他单位的优秀经验和方法,以更高的要求、更严格的纪律、更实际的措施和更好的成果,不断深化主题教育的实施,展现新的风貌和活力。

  • 交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言

    交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言

    今年3月,市政府出台《关于加快打造更具特色的“水运XX”的意见》,提出到2025年,“苏南运河全线达到准二级,实现2000吨级舶全天候畅行”。作为“水运XX”建设首战,谏壁闸一线闸扩容工程开工在即,但项目开工前还有许多实际问题亟需解决。结合“到一线去”专项行动,我们深入到谏壁闸一线,详细了解工程前期进展,实地察看谏壁闸周边环境和舶通航情况,不断完善施工设计方案。牢牢把握高质量发展这个首要任务,在学思践悟中开创建功之业,坚定扛起“走在前、挑大梁、多做贡献”的交通责任,奋力推动交通运输高质量发展持续走在前列。以学促干建新功,关键在推动高质量发展持续走在前列。新时代中国特色社会主义思想着重强调立足新发展阶段、贯彻新发展理念、构建新发展格局,推动高质量发展,提出了新发展阶段我国经济高质量发展要坚持的主线、重大战略目标、工作总基调和方法论等,深刻体现了这一思想的重要实践价值。

  • XX区文旅体局2023年工作总结 及2024年工作安排

    XX区文旅体局2023年工作总结 及2024年工作安排

    三、2024年工作计划一是完善基层公共文化服务管理标准化模式,持续在公共文化服务精准化上探索创新,围绕群众需求,不断调整公共文化服务内容和形式,提升群众满意度。推进乡镇(街道)“114861”工程和农村文化“121616”工程,加大已开展活动的上传力度,确保年度目标任务按时保质保量完成。服务“双减”政策,持续做好校外培训机构审批工作,结合我区工作实际和文旅资源优势,进一步丰富我市义务教育阶段学生“双减”后的课外文化生活,推动“双减”政策走深走实。二是结合文旅产业融合发展示范区,全力推进全域旅游示范区创建,严格按照《国家全域旅游示范区验收标准》要求,极推动旅游产品全域布局、旅游要素全域配置、旅游设施全域优化、旅游产业全域覆盖。

今日更新Word
  • 精选高中生期末评语

    精选高中生期末评语

    1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。

  • ××县招商局2024年上半年工作总结

    ××县招商局2024年上半年工作总结

    二是全力推进在谈项目落地。认真落实“首席服务官”责任制,切实做好上海中道易新材料有机硅复配硅油项目、海南中顾垃圾焚烧发电炉渣综合利用项目、天勤生物生物实验基地项目、恺德集团文旅康养产业项目、三一重能风力发电项目、中国供销集团冷链物流项目跟踪对接,协调解决项目落户过程中存在的困难和问题,力争早日实现成果转化。三是强化招商工作考核督办。持续加大全县招商引资工作统筹调度及业务指导,贯彻落实项目建设“6421”时限及“每月通报、季度排名、半年分析、年终奖励”相关要求,通过“比实绩、晒单子、亮数据、拼项目”,进一步营造“比学赶超”浓厚氛围,掀起招商引资和项目建设新热潮。四是持续优化园区企业服务。

  • “四零”承诺服务创建工作总结

    “四零”承诺服务创建工作总结

    (二)坚持问题导向,持续改进工作。要继续在提高工作效率和服务质量上下功夫,积极学习借鉴其他部门及xx关于“四零”承诺服务创建工作的先进经验,同时主动查找并着力解决困扰企业和群众办事创业的难点问题。要进一步探索创新,继续优化工作流程,精简审批程序,缩短办事路径,压缩办理时限,深化政务公开,努力为企业当好“保姆”,为群众提供便利,不断适应新时代人民群众对政务服务的新需求。(三)深化内外宣传,树立良好形象。要深入挖掘并及时总结作风整顿“四零”承诺服务创建工作中形成的典型经验做法,进一步强化内部宣传与工作交流,推动全市创建工作质效整体提升。要面向社会和公众庄严承诺并积极践诺,主动接受监督,同时要依托电台、电视台、报纸及微信、微博等各类媒体大力宣传xx队伍作风整顿“四零”承诺服务创建工作成果,不断扩大社会知情面和群众知晓率。

  • “改作风、提效能”专项行动工作总结

    “改作风、提效能”专项行动工作总结

    (五)服务群众提效能方面。一是政府采购服务提档升级。建成“全区一张网”,各类采购主体所有业务实现“一网通办,提升办事效率;全面实现远程开标和不见面开标,降低供应商成本;要求400万元以上工程采购项目预留采购份额提高至采购比例的40%以上,支持中小企业发展。2022年,我区政府采购荣获”中国政府采购奖“,并以全国第一的成绩获得数字政府采购耕耘奖、新闻宣传奖,以各省中第一的成绩获得年度创新奖。二是财政电子票据便民利民。全区财政电子票据开具量突破1亿张,涉及资金810.87亿元。特别是在医疗领域,全区241家二级以上公立医疗机构均已全部上线医疗收费电子票据,大大解决了群众看病排队等待时间长、缴费取票不方便的问题,让患者”省心、省时、省力“。

  • “大学习、大讨论、大调研”活动情况总结报告

    “大学习、大讨论、大调研”活动情况总结报告

    一、活动开展情况及成效按照省委、市委对“大学习、大讨论、大调研”活动的部署要求,县委立即行动,于8月20日组织召开常委会会议,专题传达学习省委X在读书班上的讲话精神。5月2日,县委召开“大学习、大讨论、大调研”活动推进会,及时对活动开展的相关要求、任务进行再安排再部署,会后制定并下发了活动实施方案、重点课题调研方案、宣传报道方案等系列文件,有效指导活动开展。5月17日、9月1日,县委再次召开常委会会议,专题听取“大学习、大讨论、大调研”活动开展情况汇报,研究部署下阶段工作。9月13日,召开全县“大学习大讨论大调研”活动工作推进座谈会,深入贯彻全省、全市“大学习大讨论大调研”活动工作推进座谈会精神,总结交流活动经验,对下一阶段活动开展进行安排部署。“大学习、大讨论、大调研”活动的有序开展,为砥砺前行、底部崛起的X注入了强大的精神动力。

  • 2024年度工作计划汇编(18篇)

    2024年度工作计划汇编(18篇)

    1.市政基础设施项目5项,总建设里程2.13km,投资概算2.28亿元。其中,烔炀大道(涉铁)工程施工单位已进场,项目部基本建成,正在办理临时用地、用电及用水等相关工作;中铁佰和佰乐(巢湖)二期10KV外线工程已签订施工合同;黄麓镇健康路、纬四路新建工程均已完成清单初稿编制,亟需黄麓镇完成图审工作和健康路新建工程的前期证件办理;公安学院配套道路项目在黄麓镇完成围墙建设后即可进场施工。2.公益性建设项目6项,总建筑面积15.62万㎡,投资概算10.41亿元。其中,居巢区职业教育中心新建工程、巢湖市世纪新都小学扩建工程已完成施工、监理招标挂网,2月上旬完成全部招标工作;合肥职业技术学院大维修三期已完成招标工作,近期签订施工合同后组织进场施工;半汤疗养院净化和医用气体工程已完成招标工作;半汤疗养院智能化工程因投诉暂时中止;巢湖市中医院(中西医结合医院)新建工程正在按照既定计划推进,预计4月中下旬挂网招标。