⑴、理解小数乘法交换律、结合律和分配律的意义,能运用运算定律进行小数的计算简便。⑵、经历发现归纳小数乘法交换律、结合律、分配律的全过程。学习“猜测—验证”的科学思维方式,提高类比、分析、概括的能力。⑶、在合作交流的学习活动中,提高人际交往能力。4、教学重点、难点从猜测—验证中归纳乘法交换律、结合律和分配律。二、教法和学法1、充分发挥学生的主体作用,在教学中注意让学生自主探索、发现规律、理解规律,通过猜测—验证,引导启发学生发现规律。引导学生积极、主动地参与到知识的形成过程中去。2、自始至终注意培养学生观察、比较、抽象概括能力,教给学生观察、比较、抽象概括的方法。在教学中不仅引导学生有序地观察比较,还充分运用小组合作讨论的手段,进行小组合作讨论,各抒己见,取长补短,在观察到的感性材料的基础上加以抽象概括,形成结论。
《数学课程标准》中指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。只是在学生需要时给予恰当的帮助。”通过不同形式的习题帮助学生掌握新知。进一步突出本节课的重难点。尤其是创新题,1、编两个不同的方程,使方程的解都是ⅹ=6,2、在□中填入合适的数,使等式成立。具有一定的挑战性.只有当自己的观点与集体不一致时,才会产生要证实自己思想的欲望,从而激活学生思维的火花.但是提出挑战并不意味着要难倒学生,而是要激励学生在学习的过程中不断地去获得成功的体验.学生是学习的主体,只有通过学生自身的”再创造”活动,才能纳入其认知结构中,才可能成为有效的知识. 在教与学的活动中,有老师的组织、参与和指导,有同伴的合作、交流与探索。 “授之以鱼,不如授之以渔。”虽只有一字只差,却是两种截然不同的教育理念。我选择后者。这样既培养了孩子们分析、推理能力和思维的灵活性,又为学生的新知建构拓展出更大的空间!
《较复杂的小数乘法》是第九册第一单元《小数的乘法和除法》的第三节。本 节课的教学内容是教科书第3页的例3、例4。这一教材是在学生学习了小数乘法的意义(小数乘以整数、一个数乘以小数)、小数乘法的计算法则以及小数点位置 移动引起小数大小的变化的基础上进行教学的,它是小数乘法计算法则的引伸和补充,同时也是学生今后进一步学习小数四则混合运算的基础。本节课 的教学目的是:1、使学生进一步掌握小数乘法的计算法则,懂得在点积的小数点时,乘得的积的小数位数不够的,要在前面用0补足;2、使学生初步掌握“当乘 数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大”;3、培养学生的计算能力,自学能力和概括能力。本节课的教学重点是:让学生掌握在定积的小数 时,位数不够的会用0补足。
这节课的教学内容是九年义务教育六年制小学教科书数学第九册,P117——P119页复习、例1、例2、解方程的一般步骤、想一想、做一做及P120页T1-4。教学目的有以下三点:1、使学生掌握列方程解两步应用题的方法。2、总结列方程解应用题的一般步骤。3、培养学生分析数量关系的能力,提高学生在列方程解应用题时分析等理关系的能力。教学重点:分析应用题里的等量关系,会列方程解应用题。教学难点:分析应用题里的等量关系。教具准备:小黑板、写好题目的纸条等。这节课在学生已有的解方程、分析应用题数量关系等知识的基础上进行教学,使学生掌握列方程解应用题的方法,为以后学习更深入的知识打下基础,同时培养学生积极思考问题,热爱自然科学的品质。
第三个层次,是通过师生互动,以身份证号码为例,初步了解蕴含的一些简单信息和编码的含义;通过小组对自己带来的身份证号码进行观察、比较、猜测来探索数字编码的简单方法;通过连线、判断等初步应用,进一步巩固数字编码的简单方法。第四个层次,是通过学生互动交流自己的学号,初步体验编码的过程。在整个教学中,教师不束缚学生的手脚,而让学生充分谈论他所调查、了解到的每一个信息,为学生的发展提供充分的土壤和水分,让他们自己发挥想象:“从身份证号码中你能获得哪些信息呢?”“你能给自己编一个学号吗?”问题逐层递进,使学生思维上台阶,也使不同层次学生得到不同的发展,营造一个培养学生创新思维的空间。这样做可以使学生真正成为知识的探索者、发现者和创造者,从而使学生保持一种经久不衰的探究心理,形成勇于探索、勇于创新的科学精神,是促使学生可持续发展的一种教学活动。
各位评委:大家好!今天我说课的内容是人教版五年级上册第一单元《小数乘法》的第二课时小数乘小数(一)说教材1、教学内容:P4例3、做一做,P5例4、做一做,P8—9练习一第5—9、13题。2、教学目的:1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。2、比较正确地计算小数乘法,提高计算能力。3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。3、教学重点:小数乘法的计算法则。4、教学难点:小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。(二)说教法和学法本课所用的教学方法有: 讲授法、谈话法、讨论法、练习法。 学法有:自学法,小组合作学习的方法,迁移类推概括法,归纳总结法。
在学习本课内容以前,学生已经系统地学习了整数四则混合运算和小数四则计算,为本节课内容的学习打下了基础,由于小数四则混合运算的运算顺序同整数四则混合运算的运算顺序完全一样,针对这一点,本课教学确定的教学目的是使学生熟记小数四则混合运算顺序,提高计算能力。使学生熟练地掌握小数四则混合运算的运算顺序,正确、迅速地进行小数四则混合式题的运算,是本课的教学重点。教学难点是:1.能否正确把握运算顺序。2.能否正确标明根据以上教学目的,为了更好地突出重点,突破难点,在教学中遵循大纲的要求,从简单入手。例1是最简单的两步计算题,让学生熟悉一下运算顺序。再过渡到较复杂的问题。例2是三步计算带小括号的较复杂的四则混算题,在运算过程中出现了除不尽的情况,应说明计算过程中,当除得的商超过两位小数时,一般只需保留两位小数,再进行计算。最后进入到教学重点、难点阶段。
(由除数的小数位决定。因为我们只要把除数转化成整数就成了除数是整数的小数除法。如:0.756÷0.18=75.6÷18。)(设计意图:在试做的基础上引导学生初步感受转化时小数点的移位方法,为自主概括法则作铺垫)2、学习例5:买0.75千克油用10.5元。每千克油的价格是多少元?学生列式:10.5÷0.75。①要把除数0.75变成整数,怎样转化?(把除数0.75扩大100倍转化成75。要使商不变,被除数也应扩大100倍。)②被除数10.5扩大100倍是多少?(10.5扩大100倍是1050,小数部分位数不够在末尾被“0”。)3、比较例4与例5有什么不同?(被除数在移动小数点时,位数不够在末尾用“0”补足。)4、练习:课本P21练一练第2题,学生独立完成后,归纳小结。(设计意图:对被除数小数点移位后补“0”的方法,教师可作适当点拨。学生试做后先不急于讲评,让他们对照教材中的两个例题启发学生观察、比较两道例题的不同点与计算时的注意点。引导学生分析、比较,逐步抽象出移位的方法。)
3.导入新课师:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)设计意图:知识的学习过程有一个最近发展区,通过口算和保留一定位数的小数这两块复习,可以训练孩子们的口算技能和唤起用“四舍五入”法求近似数的方法,为求积的近似数进行正迁移。二、探索情境问题,形成求积的近似值的方法1.创设情境问题,并理解题意[多媒体展示:人与狗的嗅觉细胞介绍情境动画,引出情境问题]人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少个嗅觉细胞?(得数保留一位小数)师:请同学们自由读题,并说说已知条件和所求的问题。学情预设:情境问题的已知和所求的问题都很明朗,只要能理解求一个数的几倍是多少用乘法计算即可。
这样让学生的想象建立在一定的表象基础上,不是凭空去想像。学生经历了猜测、分析推理,最后再实物验证的过程。同时,发展了学生的空间想像力和思维能力。)我继续追问:你们能不能想出一个好办法让大家知道这究竟是什么物体吗?这一富有挑战性的问题,激发了学生积极主动的去思维。从而探究出解决问题的方法是还要知道另一个面或两个面的形状。2、有了练习八第2题做铺垫,再小组合作完成39页“做一做”就很容易了,这样也体现了知识出现的层次性。)为了帮助学生把零散的知识进行归纳梳理,同时培养学生从不同角度欣赏他人的良好心态。接下来我对应用部分进行了小结:我们通过观察发现从同一个方向观察不同形状的立体图形,得到的形状也可能是相同的。因此,我们不能只根据一个方向看到的形状就确定是什么立体图形,只有把不同方向看到的形状进行综合,才能进行正确的判断。我们要全面了解一件事物或一个人也要懂得从不同的角度去观察、思考,不能片面的看待。
1.数字编码越来越重要,了解编码的含义,会给人们的生活、工作带来很多的便利。公安机关常常利用一些编码侦破案件。请同学们看个短片,仔细观察,你能找出对破案有用的线索并说出理由吗?生答。是的,公安人员根据这些线索很快将犯罪嫌疑人抓获。2.运用数字或符合来描述事物可以更简洁准确。看到这个号码不用知道名字就能找到这个人。首先请同学们仔细想一想,号码中要体现哪些方面的内容?先自己想再到小组中交流,组长记录下讨论的结果。生讨论结束后师实物出示结果,追问:①其他小组还有什么不同意见吗?集体讨论得出结果:编入入学时间、班级序号、班级学号、性别等。追问:②按什么顺序编排比较合理呢?生讨论得出按入学时间、班级序号、班级学号、性别的顺序。其次学生给自己编号码,师实物出示提问:看到这个号码,你能找到这个人吗?生根据号码找到这个人。
一、说教材《中国美食》是统编语文小学二年级下册第三组识字单元第四篇课文。课主要通过各种各样的美食图片,让学生了解中国美食,通过认识这些美食从而学习生字。通过认识这些色香味俱全的美食,认识中国的美食化,增强民族自豪感,培养学生热爱家乡、热爱祖国的感情。 本单元为识字单元,重在培养学生的识字兴趣与能力。依据单元特点及新课标要求,低年级学生能借助汉语拼音认读汉字,喜欢学习汉字,有主动识字的愿望,学会用普通话正确、流利地朗读课问。二、说学情二年级学生已经有了一定的知识基础,并掌握了不少的识字方法,因此生字学习障碍相对而言较少。但他们的生活经验毕竟有限,对文中图片中的菜品名称不是全都了解,菜肴也不全都吃过。教学时要求学生认知菜肴名称,了解菜肴,通过学习增强学生对中国美食的喜爱,对祖国的热爱之情。
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.问:此题目还可以 如何画出图形?作法二 :(1)在四边形ABCD外任取一点 O;(2)过点O分别作射线OA, OB, OC,OD;(3)分别在射线OA, OB, OC, OD的反向延长线上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′ C′、C′D′、D′A′,得到所 要画的四边形A′B′C′D′,如图3. 作法三:(1)在四边形ABCD内任取一点O;(2)过点O分别作 射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A′B′、B′C ′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)三、课堂练习 活动3 教材习题小结:谈谈你这节课学习的收获.
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。