方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因为NE=AC=a,所以MN=ME+EN=l·tanα+a.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
2、儿歌总结。我们想出了这么多的爱护公物的好办法,王老师把他们都藏在儿歌里了,一起念念吧。爱护公物我能行小朋友,讲文明,爱护公物我能行。不在桌上乱刻画,挪动桌椅要小心。卫生用具要爱惜,开门开窗手脚轻。雪白墙壁不留痕,对待花木有爱心。学校图书我爱护,损坏及时来修补。路遇破坏会制止,劝说他人有耐心。体育器材都爱护,爱护公物我能行!我能行!小结:爱护公物我能行,不单单是一句口号,更要落实在我们的实际行动中3、课后小小约定:(课件出示班级公约)爱护公物需要一份关爱,一份呵护,更需要一份约定。相信我们班的孩子一定能在约定中开出爱护之花,因为我们知道,公物是大家的,需要我们一起爱护她。4、课后整理:学生轻轻整理学习用品,轻轻摆放桌椅,安静有序离开教室。
接着我会进行提问:请同学们思考一下在有“一米线”的地方应该怎样排队好? 学生结合图片内容和我的解读进行回答:在有“一米线”的地方应该遵守排队秩序,站在“一米线”外,不偷看别人隐私。 最后我会进行总结:“一米线”是为了保护他人隐私而设置的,每个人都应自觉站在“一米线”外排队,保护他人隐私。 【设计意图】通过图片加教师解读的方式帮助学生快速理解“一米线”的意义,进而理解排队时也要遵循一定的原则,要知道怎样排队好,比如要注意尊重他人隐私等,从而突破本课难点。 环节三:巩固提高 我会请同学们仔细阅读绘本的八幅图片,并请同学们是怎么理解每一幅图的,先让同学自己说一说,再前后四人为一小组互相交流,看看他们之间的理解是否一样? 学生结合教材绘本思考并讨论。 最后我会总结:生活中我们排队时会遇到各种各样的情景,在面对不同的情景时我们要学会采用不同的方法,排队时要坚持平等、公平、紧急情况征得同意等原则。
设计意图:体会公共设施被破坏,给人们的生活带来的不便和危害。活动二:保护我们的“朋友” 首先,课件出示有关破坏公共设施行为处罚的相关法律条文,学生说一说,破坏公共设施会受到怎样的法律制裁。接着,教师列 举一些社会生活中因破坏公共设施而受到法律制裁的事例。然后,课件出示几个公共设施受到损坏的场景,教师引导学生 说一说,该怎么办?并板书。设计意图:知道爱护公共设施是每个公民的责任和义务,破坏 公共设施会受到法律制裁。活动三:善待我们的“朋友”学生阅读教材第 56 页的两幅图片,倾听一些公共设施的“心 声”。然后,课件出示几幅公共设施的图片,学生小组交流这些公共 设施被损坏的原因,讨论文明使用公共设施的金点子。全班交流汇 报,教师相机引导,并板书。
(3)从“取笑”的闹剧中,你心里生发出哪些感触?学生自主思考,交流展示。预设:作者表达了对刘姥姥这位社会底层的农村老妇的悲悯和尊敬;通过刘姥姥的眼睛映射出贾府豪奢、腐朽的景象,对贾府的腐败没落进行了侧面批判;告诉我们生活不易,要珍惜当下。【设计意图】经典作品,在于其艺术性和思想性,深读侧重于引导学生以《刘姥姥进大观园》为例指导学生课外阅读《红楼梦》,达到课内学法课外实践,真正落实语文核心素养的目的。六、拓读,学以致用之微写作模仿文中第7段对众人各具情态又绘声绘色的笑态的描写,描写在运动会上班级获得团体冠军那一刻同学们和老师的不同神态,并以此表现不同人物的特点。【设计意图】捕捉写作微写作点,常态化训练微写作,是提高学生写作能力的最佳途径。学习经典小说的经典写法,更是胜过教师讲解任何写作技巧。
三、下步打算(一)坚持高质量发展,不断增强经济实力坚持把财税工作作为工作重点,积极拓展税源,不断筑牢财政基础。进一步加快项目验收等相关工作。加速推动争资争项指标任务完成。(二)坚持发展现代农业,不断优化产业结构坚持生态高效种养导向,全面落实单产提升晚稻面积2.8万亩。在创建单产提升示范区的大背景下,加速实现农业种植规模化、高效化,打造好河泊潭千亩生态高效农业示范片,以科技赋粮实现水稻增产、农民增收、绿色发展目标。(三)坚持美丽乡村建设,不断改善村容村貌创新制定人居环境领导责任制,包村干部全部深入各村,打桩定位领任务,带头上户做好人居环境劝导、整治等工作。充分发挥示范带动引领,推动荞麦湖村、河泊潭村、磊石村三个乡村振兴示范点建设,以点带面推动全乡人居环境整治提档提质,让绿色成为凤凰最鲜明的底色。
二是人才培养方式缺乏新意。受到场所、经费及师资力量等情况制约,人员培训上还是以传统课堂授课为主,知识讲得多、实操做得少,且大多都是蜻蜓点水,难以取得良好效果。三是人才开发难度大。我乡实用人才队伍中还有不少人依旧保持小农经济思想,只满足于一时的温饱,小富即安,主动接受新知识、新技能的意愿不强。三、下一步工作打算一是打好“人情牌”。借助中秋、国庆等返乡高峰节点,通过实地走访慰问、座谈了解等方式,广泛征求意见建议,不断深化感情。持续加大人才政策宣传力度,增强农村青年一代返回家乡创业的意识。二是打好“发展牌”。持续加强同省农业农村厅、科技特派团等单位的沟通,借才引智,采取集中培训、观摩交流、实践锻炼等方式,重点培训农业实用技术、乡村旅游等内容,不断提升乡村人才队伍带富致富能力。三是打好“暖心牌”。坚决落实好人才工作相关扶持政策,支持鼓励乡土人才创办产业合作社、家庭农场等等新型农业经营主题,确保其起到产业带动和示范作用。
一是经济运行仍有短板。发展步伐仍需加快,高质量发展动能不够强劲,经济总量不大;产业结构不够优化,农业大而不强,规模化、产业化、科技化程度较低。二是乡村建设仍有压力。生态环境保护任务还十分繁重,农村垃圾、污水、厕所“三大革命”还需持续加强;乡村基础设施建设需进一步提升,部分村道路交通、农田水利等基础设施亟待提质。三是民生领域仍有欠账。存在主体责任落实不到位、资料台账不规范、收入统计不细致、结对帮扶措施不精准等问题。三、下步打算(一)坚持高质量发展,不断增强经济实力坚持把财税工作作为工作重点,积极拓展税源,不断筑牢财政基础。进一步加快项目验收等相关工作。加速推动争资争项指标任务完成。(二)坚持发展现代农业,不断优化产业结构坚持生态高效种养导向,全面落实单产提升晚稻面积2.8万亩。在创建单产提升示范区的大背景下,加速实现农业种植规模化、高效化,打造好河泊潭千亩生态高效农业示范片,以科技赋粮实现水稻增产、农民增收、绿色发展目标。
(三)建设和美乡村。坚持常年常态长效抓好人居环境整治,围绕集镇、中心村周边、美丽宜居自然村庄等重点区域,推动全域环境干净整洁有序。力争2024年成功创建和美乡村精品示范村1个。稳步推进“一核三线”生态旅游产业观光带建设,支持农耕文化体验园、泾江文化长廊建设。继续办好第三届洲头葡萄文化旅游艺术节、篮球赛等群众喜闻乐见的文体活动。(四)提升治理水平。推深做实“1+3”社会治理,力争全年无赴省进京访,确保社会大局和谐稳定。常态化开展矛盾纠纷隐患排查,确保做到早发现、早化解,全力争创新时代“枫桥式派出所”。(五)织密安全防线。严格落实安全生产责任制,完善应急管理体系,持续推进重点领域风险隐患排查整治,常态化开展道路交通、消防、工贸、食品、水上交通、燃气等重点领域安全生产大检查,切实筑牢安全防线。
三、打造数字档案管理,提高政治素质考察参考度。建立政治家访工作档案,实行一人一档管理,入档内容包括《领导干部生活圈、社交圈情况登记表》、《领导干部及时报告个人有关事项清单》、《xx政治家访直接联系机制名单》、《xx政治家访记录表》、《xx政治家访“好家规、好家教、好家风”推荐表》等。由政治素质审查工作小组逐条梳理汇总家访整体评价意见,按照《xx科级领导干部政治素质数字化纪实管理实施办法(试行)》,分类归入干部政治素质数字化档案,将科级领导干部和优秀年轻干部政治家访情况作为年度考评、评优评先、调整使用的重要参考。同时,将政治家访情况中反映的困难需求、意见建议分类建立清单,明确专人跟进处理解决,及时做好回复反馈,帮助干部解决问题,进一步激发干事创业热情,为全区经济社会各项事业发展提供坚实保障。
二是人才培养方式缺乏新。受到场所、经费及师资力等情况制约人员培训上还是以传统课堂授课主知识讲得多、实操做得少且大多都是蜻蜓点水难以取得良好效果。三是人才开发难度大。我乡实用人才队伍中还有不少人依旧持小农经济思想只足于一时的温饱小富即安主动受新知识、新技能的愿不强。三、下一步工作打算一是打好“人情牌”。借助中秋、国庆等返乡峰节点通过实地走访慰问、座谈了解等方式广泛征求见建议不断深化感情。持续大人才政策宣传力度增强农村青年一返回家乡创业的识。二是打好“发展牌”。持续强同省农业农村厅、科技特派团等单位的沟通借才引智采取集中培训、观摩交流、实践锻炼等方式重点培训农业实用技术、乡村旅游等内容不断升乡村人才队伍带富致富能力。三是打好“暖心牌”。坚决落实好人才工作相关扶持政策支持鼓励乡土人才创办产业合作社、家庭农场等等新型农业经营主题确其起到产业带动和示范作用。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。