二、说教学目标1.正确、流利、有感情地朗读这首诗。2.一边读一边展开想象,从秋天的声音中体会秋天的美好。3.尝试仿照诗歌的格式,续写诗文。三、说教学重难点1.从秋天的音响中,想象秋天景象的美好;有感情地朗读诗歌,体会诗中浓浓的秋情。?(重点) ?? 2.体会诗中浓浓的秋意,仿照诗歌的形式,说一说,写一写。(难点)四、说教法和学法教法:在本课的设计中,我以“美”为基调,以“赏”为主线,以“趣”为佐料,以“仿”为桥梁,旨在让学生久久沉浸在浓浓的诗情秋韵里,来丰富学生的情感体验,从而使语文学习变成一种愉悦身心的自主的渴望。学法:充分运用视频、音频等多媒体教学手段,调动学生多种感官参与教学,提高教学效率。让学生们从秋天所特有的声音中,体味秋天独特的风情。使学生初步接触诗歌,走进诗歌,感受诗歌从而达到热爱诗歌,进一步提高学生的语文素养。
一、说教材本课是统编教材小学语文三年级上册第四单元的一篇精读课文。《总也倒不了的老屋》主要描写了老屋已经活了一百多岁了,它的窗户变成了黑窟窿,门板也破了洞,它很久很久没人住了。正准备往旁边倒去的时候,小猫请求他再过一个晚上,躲避晚上的暴风雨,安心睡觉,老屋答应小猫再站一个晚上。第二天,天晴了,小猫从门上的破洞跳了出来,老屋说正准备倒下的时候请求在老屋里孵小鸡,老屋答应老母鸡再站二十一天。二十一天后,老母鸡从破窗户里走了出来,九只小鸡从门板下面叽叽叫着钻出来,老屋说正要倒下的时候了小蜘蛛请求老屋再站一会儿,他要找不到一个安心织网抓虫的地方,老屋答应小蜘蛛再站一会儿。小蜘蛛一边忙着补网,一边给老屋讲故事,小蜘蛛的故事一直没讲完,因此,老屋到现在还站在那儿,边晒太阳,边听小蜘蛛讲故事。????课文赞扬了老屋的爱心和他的善良品质。
有感情地朗读课文,理解重点词句,了解爬山虎脚的特点。过程与方法目标:以学生为主体,遵循阅读教学的原则,让学生充分地与文本交流,在自读、感情朗读、品读等形式多样的阅读中,理解课文内容,积累精美的语言文字,学习作者观察和表达的方法,运用到自己的习作中去。情感目标:激发学生留心观察的兴趣,做生活的有心人。教学重点是:通过对词句的理解,了解爬山虎脚的特点。教学难点是:爬山虎是怎样用脚向上爬的。此篇课文的教学设计为两课时,第一课时要让学生初读课文,扫清字词障碍,在读中理清文章的结构层次,整体感知,而后感情朗读。第二课时直扑重点,学习课文三至五自然段爬山虎脚的部分,通过小组合作学习探究,在读中充分体会到作者对爬山虎的观察入微,而且是连续观察了很长时间。以下我着重对第二课时的教学设计作进一步说明。
(一)联系生活、激趣导入新课标指出,应拓宽语文学习和运用的领域,注重跨学科的学习和现代化科技手段的运用,使学生在不同内容和方法的相互交叉、渗透和整合中开阔视野,提高学习效率,初步获得现代社会所需要的语文实践能力。上课前,学生在以前已经学过口语交际介绍自己的家,学生会非常自豪,能踊跃地说。再加上课前对蟋蟀的已知了解,学生已经知道蟋蟀的歌声动听,对蟋蟀的可爱、有趣早已铭记在心。这样二者结合起来,能很好地调动学生学习的兴趣,实现旧知迁移,为学生转换角色,改变学习方式作准备,也为学生发展口语作准备。这样让学生把自己的家和早已熟悉的蟋蟀的住宅联系起来,自然而然地导入课题。
三、说教学重难点:1.理解课文内容,体会作者对若小动物的关爱之情是教学重点;2.感受作者对雨中蝴蝶的担忧与牵挂是教学难点。四、说教学方法: 讲解教学方法、讲读教学方法。五、说教学过程:(一)渲染气氛,引发疑惑之情课前播放凯丽金的名曲《回家》,配以一家人在家中其乐融融的图片,欣赏着熟悉而温馨的场景,倾听着优美动听的旋律,学生心是暖暖的,图片将学生的目光由人的家引向了其它生灵的家,蜜蜂有蜜蜂的家,小鸟有小鸟的家,那么蝴蝶的家在哪儿呢?此时,学生带着疑问兴趣盎然地走进了文本。
一、说教材 《爬山虎的脚》这篇课文是按照从整体到部分再到细节的顺序,介绍了爬山虎的叶子、爬山虎的脚的形状、特点以及是怎样用脚在爬的,启发人们留心和细致地观察周围的事物。本单元训练重点是“读懂课文内容的基础上,领悟表达能力;培养学生学语文、用语文的综合能力”,《爬山虎的脚》这篇课文内容具体,条理清楚,文字浅显,是引导学生学会观察的好范例。二、说教学目标: 1.学习课文,激发学生探究的愿望,以及留心观察周围事物的强烈兴趣。 2.认识生字,会写生字。正确读写生词。了解爬山虎的特点。3.理清课文的叙述顺序,学习作者细心观察的方法。正确、流利、有感情地朗读并背诵课文。 三、说教学重难点:1.本课的教学重点是:作者是怎样围绕爬山虎的特点写好片段的。2.教学难点是:爬山虎是怎样一脚一脚地往上爬的。四、说教学方法: 讲解教学方法、讲读教学方法。
二、说教学目标: 1.认识7个生字,会写13个生字。正确读写“住宅、隐蔽、随遇而安”等词语。2.能正确、流利、有感情地朗读课文,掌握课文的主要内容,读懂蟋蟀的“住宅”是怎样建成的。体会作者拟人的习作方法。 3.学习蟋蟀那种不辞辛苦和不肯随遇而安的精神,激发观察自然界的兴趣。三、说教学重难点:1.了解蟋蟀的住宅是怎样建成的;2.体会蟋蟀吃苦耐劳、不肯随遇而安的精神。四、说教学方法: 长期以来一直关注教师如何教,而忽视了学生如何学,在这节课中将关注学生的学法,用学生的“学”决定教师的“教”。从而引导学生自主、合作、探究学习。在学生自主阅读的基础上受到熏陶感染,再把学生的感悟与老师、同学交流。 在此设计理念的指导下我准备采用以下教法:情趣教学法、多媒体直观法、以读促悟法。学生主要采用以下学法:自主质疑法、合作解疑法、自读自悟法。
二、说学情对于六年级的学生读这篇文章时,对于夏天里各种事物飞快地长,跳跃地长,理解起来比较容易,但是对于课文的最后一句话所蕴含的道理学生理解起来有一定难度。 三、说教学目标和重点难点 在详细解读教材内容的基础上,依据课标的要求和学生的实际情况,我将本课的教学目标设定为:1.知识与技能目标:会写10个字。正确流利有感情地朗读课文,理解课文主要内容及重点句子的含义,体会作者的表达特点。2.过程与方法目标:通过学习理解和感悟,感受夏天里各种事物都在快速地生长。学会与人交流,提高表达能力、学习语文的能力。3.情感态度与价值观目标:让学生体会“人也是一样,要赶时候,赶热天,尽量地用力地长。”的含义,从而懂得把握时间珍惜时间。
一、说教材《好的故事》是鲁迅先生的一篇富有散文诗性质的短文,作者通过这简短的文字,展现给读者一种美丽而深邃的意境,表现了鲁迅先生关于人生的现实的与哲学的深沉思考。这些深邃的人生哲学和现实感慨,经过鲁迅先生在非常宁静的深夜里的深沉艺术思索,以精美的文字,新颖的联想和独特的构思呈现出来。作者是在一种开头和结尾互相衔接与呼应的“圆形结构”中展开构思的。散文开头写“我”自身的现实处境,继而切入昏昏欲睡的梦境:“许多美的人和美的事”在梦境的想象中,错综的交织在一起,最后又由梦中醒来,回到现实中,书写了一种对于美丽的梦的失落和追念。这其中,“昏沉的夜”即使做梦所处的大的环境,也是鲁迅所生存的黑暗现实的象征;而“美的人和美的事”则是鲁迅先生对黑暗现实绝望反抗心境之下,内心深处对理想、美好、和平境界的向往与抒写。
五、说教学过程 (一)谈话导入。 以学生平时的生活话题导入:同学们做过梦吗?谁能把自己做的美梦和大家分享一下?自然地提挈了文章内容,为学生理解课文做了铺垫。 (二)初读课文,扫清字词障碍。 让学生快速浏览课文,要求:读准字音,读通课文,遇到生字较多或难读的地方多读几遍,不理解的地方做上记号。 我再利用多媒体检查自学情况。课件出示生字词检查认读,抽查朗读。对易读错、写错的字让学生交流讨论识字方法,帮助识记。对难读的句子,交流朗读方法和要点,学生进行展示读。对难理解的词语,让学生利用学过的理解词语的方法交流讨论,理解意思。 (三)再读课文,整体感知。 请同学们自由朗读课文,思考:课文有几部分内容?重点写了什么? 明确文章的写作顺序和思路,引导分清层次,概括内容。根据学生的回答,适当提示总结,以梦境为中心展开,帮助概括内容。
通过主题图,草原牧羊图。让学生整体感知100有多少,体会数学与自然和人类社会的密切联系。接着通过例1,数100以内各数从整体上感知100,认识计数单位“一(个)”和“十”、再通过例2,从三十五数到四十二,从八十八数到一百。这里有两个层次,一个是让学生借助小棒具体地数数,别一个是让学生抽象的数数。例2 的主要目的是突破数数的难点,当数到接近整十数时,下一个数整十数应是多少。然后通过做一做,拿出五十六跟小棒。接着数到六十三,再接着数到七十二。目的是巩固数数,突破数数难点。最后教学例3,100以内数的组成,目的是让学生明白一个两位数是由几个十和几个一组成。通过做一做,数钢笔和数汤圆。目的是让学生巩固和掌握数的组成。根据教材的安排我确定如下教学目标:1、 学生能运用不同的方法正确数出数量在100以内的物体的个数,能正确数出100以内的数,知道这些数是由几个十和几个一组成的。2、能根据提供的素材,估计数量在100以内的物体的个数;通过对100以内的数的认识,进一步培养学生的数感。3、激发学生学习数学的兴趣和估数的意识,培养学生的合作意识。教学重点:正确熟练地数100以内的数及其组成。教学难点:接近整十的数的数法。
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。