根据《中华人民共和国广告法》、《中华人民共和国合同法》的规定,甲乙双方在平等、自愿的基础上,本着友好协商、互惠互利的原则,就甲方委托乙方制作、发布广告等相关事宜,达成如下协议:第一条 合同概况(一) 广告项目名称: (二) 广告发布地点: (三) 广告发布形式: (四) 广告规格数量: (五) 广告质量标准: (六) 广告发布期限:1.共 天,自 年 月 日至 年 月 日。2.实际发布起始日期推迟的,截止日期相应顺延。3.合同期满后,在同等条件下,甲方有优先续约权。 第二条 合同总价款及支付方式(一) 合同总价款为:(大写)人民币 (小写) 元整,此价款包含制作费、设置费、报批费、占地费、电费、保险费、维修费、撤除费用、税金,以及同本广告发布相关的其他所有费用。(合同价款是固定的,乙方无权以任何理由要求增加合同价格,如市场物价上涨,货币价格浮动,生活费用提高,工资的基限提高,调整税法及税务。此价款包含税款。) (二) 付款方式:本合同生效后,甲方预付合同总价款的20%款项给乙方。验收合格后,付至合同总价款的95%,剩余5%为质保金。质保期自广告经验收合格后至广告发布期限届满之日,待质保期满后甲方将质保金一次付清。
现有甲方向乙方采购模具事宜,根据《中华人民共和国合同法》及相关法律、行政法规的规定,甲、乙双方经平等、自愿、友好协商达成以下协议:1. 图纸编号,部件名称,模具类型,模数,模穴,模具费 产品图号 产品品号及名称 模具类型 适用产品 模芯/模架材料 模具数 模穴数 模具寿命压模次数 总价(元) 交付时间备注: 乙方需提供模具材质证明2. 交货方式2.1 模具验收合格后, 乙方负责将模具运送到甲方指定地点(广东省内)(运费全部由乙方承担)。2.2 甲方委托由乙方加工生产此模具之产品,如达到模具使用后寿命,乙方免费为甲方重新开一套模具;且以上模具所有权都属甲方。3. 质量要求、技术标准3.1 甲方提供零件图纸与相关技术要求。3.2 乙方根据甲方零件图纸和相关技术要求进行模具设计,并制作完成相关模具设计图纸。乙方须将该图纸提交甲方技术人员确认后再进行具体的模具制作(即乙方须提供模具结构图并得到甲方确认,方可制作模具)。3.3 乙方必须按甲方要求填写《模具清单》确保模具所生产的产品零件无缺陷,《模具清单》随模具合同同时发放,填写并需乙方签字盖章生效。3.4 乙方必须确保模具所使用的材质与报价时所填《模具清单》的材质一致,如有发现材质问题,甲方有权要求乙方按本合同模具总价的2倍进行赔偿。4. 产品保密要求4.1 甲方提供的图纸、模具的所有权、知识产权归属甲方,乙方不得向第三人披露。未经甲方允许,乙方不得根据图纸、模具进行加工销售。否则,甲方有权终止合同,停止支付所有货款,有权要求乙方按模具总价的2倍予以赔偿,并保留追究乙方法律责任的权利。
甲、乙双方依据《中华人民共和国合同法》等有关法律、法规和规章的相关规定,就甲方向乙方借款事宜,经充分协商一致,特订立本合同,并共同遵守。第一条 借款金额、期限1.1 本合同项下借款金额为人民币(大写) ;(小写) 。1.2 本合同项下借款期限为(大写) (个月、年),自 年 月 日至 年 月 日。实际借款期限以借款借据或乙方出借款项实际到达甲方账户为准。借款借据为本合同的有效组成部分,与本合同具有同等法律效力。第二条 借款用途2.1 本合同项下出借款项用于 未经乙方书面同意,甲方不得改变借款用途。2.2 甲方承诺如擅自改变借款用途,或将借款用于非法活动,造成的任何后果及法律责任概由甲方自行承担,与乙方无关。第三条 贷款利率、计息、结息3.1 本合同项下的借款利率为月利率,利率为 %,在约定的借款期间内,该利率保持不变,但甲、乙双方另有约定的,从其约定。3.2 计息:贷款利息从出借款项实际到达甲方账户之日起开始计算。本合同项下的贷款按日计息,日利率=月利率/30。
再齐读第一自然段,读出各民族直接的友爱,读出校园中穿戴不同,美丽的场景,读出同学们快乐的心情。引导学生更深切感受大青树下的小学里各民族小学生的团结友爱,和学校的美丽。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》。对数函数是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、理解对数函数的定义,会求对数函数的定义域;2、了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。3、在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣。
对数函数与指数函数是相通的,本节在已经学习指数函数的基础上通过实例总结归纳对数函数的概念,通过函数的形式与特征解决一些与对数函数有关的问题.课程目标1、通过实际问题了解对数函数的实际背景;2、掌握对数函数的概念,并会判断一些函数是否是对数函数. 数学学科素养1.数学抽象:对数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用对数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结对数函数概念.重点:理解对数函数的概念和意义;难点:理解对数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?
由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系. 数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念; 2.逻辑推理:正弦曲线与余弦曲线的联系; 3.直观想象:正弦函数余弦函数的图像; 4.数学运算:五点作图; 5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。
本节课是正弦函数、余弦函数图像的继续,本课是正弦曲线、余弦曲线这两种曲线的特点得出正弦函数、余弦函数的性质. 课程目标1.了解周期函数与最小正周期的意义;2.了解三角函数的周期性和奇偶性;3.会利用周期性定义和诱导公式求简单三角函数的周期;4.借助图象直观理解正、余弦函数在[0,2π]上的性质(单调性、最值、图象与x轴的交点等);5.能利用性质解决一些简单问题. 数学学科素养1.数学抽象:理解周期函数、周期、最小正周期等的含义; 2.逻辑推理: 求正弦、余弦形函数的单调区间;3.数学运算:利用性质求周期、比较大小、最值、值域及判断奇偶性.4.数学建模:让学生借助数形结合的思想,通过图像探究正、余弦函数的性质.重点:通过正弦曲线、余弦曲线这两种曲线探究正弦函数、余弦函数的性质; 难点:应用正、余弦函数的性质来求含有cosx,sinx的函数的单调性、最值、值域及对称性.
指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入在本章的开头,问题(1)中时间 与GDP值中的 ,请问这两个函数有什么共同特征.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
活动目标:1、激发幼儿与同伴交流和分享的兴趣,帮助幼儿获得基本的交流经验。2、鼓励幼儿大方的把自己喜欢的车介绍给大家,并乐于想象未来的车。3、引导幼儿了解自己喜欢的车的名称、样子和用途,并尝试粘贴公共汽车。活动准备:1、请幼儿搜集各种汽车模型并布置成“汽车城”。2、各种汽车图片、小标志。3、录音机、音乐磁带《汽车开来了》、故事《神奇的变形车》磁带。
【活动准备】 瓶子、米粒、豆子、图案贴纸(用于装饰瓶子)、背景音乐《白龙马》、乐器幻灯片 【活动过程】 一、童话故事导入。圣诞节到了,小企鹅和金丝猴收到了圣诞老人送给他们的礼物。小企鹅受到了一盒巧克力,金丝猴也收到了一个包装很漂亮的礼物,高兴地打开看,原来里面装着一个普通的瓶子,他有点太失望了。圣诞老人笑呵呵地说:“金丝猴,你可别小看这个瓶子,它叫“铃铛乐器”,他很神奇呢!接着,圣诞老人唱起歌来,还不停地摇动瓶子伴奏。金丝猴一看,原来这是用瓶子制作的“铃铛乐器”啊,金丝猴开心地笑了起来。小朋友我们也来做一个吧! 二、认识材料:瓶子、漏斗、米粒、豆子、图案贴纸。
活动准备: 装有冷水和热水的瓶子各10个,热水袋、冰块各一份,布袋两个,各种物品图片大小各一份。活动过程:一、布袋里的秘密1、师:今天,老师带来了两个布袋袋,里面藏着小秘密,你们想不想知道? 请两名幼儿来摸摸,说说摸到了什么?2、教师出示热水袋和冰块,让孩子们摸摸,说说感觉。3、你喜欢冷冷的还是热热的?4、小结:冬天到了,我们喜欢热热的,天气热了,我们就喜欢冷冷的。
[活动目标] 1、培养幼儿用肥皂洗手的良好卫生习惯。 2、通过幼儿的自主探索活动,使幼儿知道肥皂的外形特征及用途。 [活动准备] 各式各样的肥皂及肥皂盒若干;各种旧玩具、旧手绢等;吹泡泡玩具瓶(与幼儿人数相等);“我爱洗澡”音乐及磁带、录音机;盛玩具的小筐若干;干净毛巾(与幼儿人数相等)、盛水的大水盆六个,小方布一块,剪好的小红星若干。 [活动过程]1、《我爱洗澡》音乐,老师与幼儿做动作进入活动室。 (1)老师吹泡泡引起幼儿兴趣。 (2)出示肥皂并请幼儿描述。(请幼儿自由发言) (3)出示多种多样的肥皂,让幼儿观摩。老师引导幼儿观察肥皂形状、颜色、气味,并用手摸摸,说出感觉。(幼儿分别发表自己的意见)
新知探究我们知道,等差数列的特征是“从第2项起,每一项与它的前一项的差都等于同一个常数” 。类比等差数列的研究思路和方法,从运算的角度出发,你觉得还有怎样的数列是值得研究的?1.两河流域发掘的古巴比伦时期的泥版上记录了下面的数列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《庄子·天下》中提到:“一尺之锤,日取其半,万世不竭.”如果把“一尺之锤”的长度看成单位“1”,那么从第1天开始,每天得到的“锤”的长度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在营养和生存空间没有限制的情况下,某种细菌每20 min 就通过分裂繁殖一代,那么一个这种细菌从第1次分裂开始,各次分裂产生的后代个数依次是2,4,8,16,32,64,… ⑤4.某人存入银行a元,存期为5年,年利率为 r ,那么按照复利,他5年内每年末得到的本利和分别是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
由样本相关系数??≈0.97,可以推断脂肪含量和年龄这两个变量正线性相关,且相关程度很强。脂肪含量与年龄变化趋势相同.归纳总结1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r来检验线性相关显著性水平时,通常与0.75作比较,若|r|>0.75,则线性相关较为显著,否则不显著.例2. 有人收集了某城市居民年收入(所有居民在一年内收入的总和)与A商品销售额的10年数据,如表所示.画出散点图,判断成对样本数据是否线性相关,并通过样本相关系数推断居民年收入与A商品销售额的相关程度和变化趋势的异同.
新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即
二、典例解析例4. 用 10 000元购买某个理财产品一年.(1)若以月利率0.400%的复利计息,12个月能获得多少利息(精确到1元)?(2)若以季度复利计息,存4个季度,则当每季度利率为多少时,按季结算的利息不少于按月结算的利息(精确到10^(-5))?分析:复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息.所以若原始本金为a元,每期的利率为r ,则从第一期开始,各期的本利和a , a(1+r),a(1+r)^2…构成等比数列.解:(1)设这笔钱存 n 个月以后的本利和组成一个数列{a_n },则{a_n }是等比数列,首项a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12个月后的利息为10 490.7-10^4≈491(元).解:(2)设季度利率为 r ,这笔钱存 n 个季度以后的本利和组成一个数列{b_n },则{b_n }也是一个等比数列,首项 b_1=10^4 (1+r),公比为1+r,于是 b_4=10^4 (1+r)^4.
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。