问题二:上述问题中,甲、乙的平均数、中位数、众数相同,但二者的射击成绩存在差异,那么,如何度量这种差异呢?我们可以利用极差进行度量。根据上述数据计算得:甲的极差=10-4=6 乙的极差=9-5=4极差在一定程度上刻画了数据的离散程度。由极差发现甲的成绩波动范围比乙的大。但由于极差只使用了数据中最大、最小两个值的信息,所含的信息量很少。也就是说,极差度量出的差异误差较大。问题三:你还能想出其他刻画数据离散程度的办法吗?我们知道,如果射击的成绩很稳定,那么大多数的射击成绩离平均成绩不会太远;相反,如果射击的成绩波动幅度很大,那么大多数的射击成绩离平均成绩会比较远。因此,我们可以通过这两组射击成绩与它们的平均成绩的“平均距离”来度量成绩的波动幅度。
可以通过下面的步骤计算一组n个数据的第p百分位数:第一步:按从小到大排列原始数据;第二步:计算i=n×p%;第三步:若i不是整数,而大于i的比邻整数位j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第i+1项的平均数。我们在初中学过的中位数,相当于是第50百分位数。在实际应用中,除了中位数外,常用的分位数还有第25百分位数,第75百分位数。这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数。其中第25百分位数也称为第一四分位数或下四分位数等,第75百分位数也称为第三四分位数或上四分位数等。另外,像第1百分位数,第5百分位数,第95百分位数,和第99百分位数在统计中也经常被使用。例2、根据下列样本数据,估计树人中学高一年级女生第25,50,75百分位数。
新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。
9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
1.直观图:表示空间几何图形的平面图形,叫做空间图形的直观图直观图往往与立体图形的真实形状不完全相同,直观图通常是在平行投影下得到的平面图形2.给出直观图的画法斜二侧画法观察:矩形窗户在阳光照射下留在地面上的影子是什么形状?眺望远处成块的农田,矩形的农田在我们眼里又是什么形状呢?3. 给出斜二测具体步骤(1)在已知图形中取互相垂直的X轴Y轴,两轴相交于O,画直观图时,把他们画成对应的X'轴与Y'轴,两轴交于O'。且使∠X'O'Y'=45°(或135°)。他们确定的平面表示水平面。(2)已知图形中平行于X轴或y轴的线段,在直观图中分别画成平行于X'轴或y'轴的线段。(3)已知图形中平行于X轴的线段,在直观图中保持原长度不变,平行于Y轴的线段,在直观图中长度为原来一半。4.对斜二测方法进行举例:对于平面多边形,我们常用斜二测画法画出他们的直观图。如图 A'B'C'D'就是利用斜二测画出的水平放置的正方形ABCD的直观图。其中横向线段A'B'=AB,C'D'=CD;纵向线段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,这与我们的直观观察是一致的。5.例一:用斜二测画法画水平放置的六边形的直观图(1)在六边形ABCDEF中,取AD所在直线为X轴,对称轴MN所在直线为Y轴,两轴交于O',使∠X'oy'=45°(2)以o'为中心,在X'上取A'D'=AD,在y'轴上取M'N'=½MN。以点N为中心,画B'C'平行于X'轴,并且等于BC;再以M'为中心,画E'F'平行于X‘轴并且等于EF。 (3)连接A'B',C'D',E'F',F'A',并擦去辅助线x轴y轴,便获得正六边形ABCDEF水平放置的直观图A'B'C'D'E'F' 6. 平面图形的斜二测画法(1)建两个坐标系,注意斜坐标系夹角为45°或135°;(2)与坐标轴平行或重合的线段保持平行或重合;(3)水平线段等长,竖直线段减半;(4)整理.简言之:“横不变,竖减半,平行、重合不改变。”
1.探究:根据基本事实的推论2,3,过两条平行直线或两条相交直线,有且只有一个平面,由此可以想到,如果一个平面内有两条相交或平行直线都与另一个平面平行,是否就能使这两个平面平行?如图(1),a和b分别是矩形硬纸板的两条对边所在直线,它们都和桌面平行,那么硬纸板和桌面平行吗?如图(2),c和d分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺与桌面平行吗?2.如果一个平面内有两条平行直线与另一个平面平行,这两个平面不一定平行。我们借助长方体模型来说明。如图,在平面A’ADD’内画一条与AA’平行的直线EF,显然AA’与EF都平行于平面DD’CC’,但这两条平行直线所在平面AA’DD’与平面DD’CC’相交。3.如果一个平面内有两条相交直线与另一个平面平行,这两个平面是平行的,如图,平面ABCD内两条相交直线A’C’,B’D’平行。
问题导入:问题一:试验1:分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝上”,B=“第二枚硬币正面朝上”。事件A的发生是否影响事件B的概率?因为两枚硬币分别抛掷,第一枚硬币的抛掷结果与第二枚硬币的抛掷结果互相不受影响,所以事件A发生与否不影响事件B发生的概率。问题二:计算试验1中的P(A),P(B),P(AB),你有什么发现?在该试验中,用1表示硬币“正面朝上”,用0表示“反面朝上”,则样本空间Ω={(1,1),(1,0),(0,1),(0,0)},包含4个等可能的样本点。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率计算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)积事件AB的概率恰好等于事件A、B概率的乘积。问题三:试验2:一个袋子中装有标号分别是1,2,3,4的4个球,除标号外没有其他差异。
1.圆柱、圆锥、圆台的表面积与多面体的表面积一样,圆柱、圆锥、圆台的表面积也是围成它的各个面的面积和。利用圆柱、圆锥、圆台的展开图如图,可以得到它们的表面积公式:2.思考1:圆柱、圆锥、圆台的表面积之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?3.练习一圆柱的一个底面积是S,侧面展开图是一个正方体,那么这个圆柱的侧面积是( )A 4πS B 2πS C πS D 4.练习二:如图所示,在边长为4的正三角形ABC中,E,F分别是AB,AC的中点,D为BC的中点,H,G分别是BD,CD的中点,若将正三角形ABC绕AD旋转180°,求阴影部分形成的几何体的表面积.5. 圆柱、圆锥、圆台的体积对于柱体、锥体、台体的体积公式的认识(1)等底、等高的两个柱体的体积相同.(2)等底、等高的圆锥和圆柱的体积之间的关系可以通过实验得出,等底、等高的圆柱的体积是圆锥的体积的3倍.
(2)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下。故用中位数来估计每天的用水量更合适。1、样本的数字特征:众数、中位数和平均数;2、用样本频率分布直方图估计样本的众数、中位数、平均数。(1)众数规定为频率分布直方图中最高矩形下端的中点;(2)中位数两边的直方图的面积相等;(3)频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数。学生回顾本节课知识点,教师补充。 让学生掌握本节课知识点,并能够灵活运用。
新知探究:向量的减法运算定义问题四:你能根据实数的减法运算定义向量的减法运算吗?由两个向量和的定义已知 即任意向量与其相反向量的和是零向量。求两个向量差的运算叫做向量的减法。我们看到,向量的减法可以转化为向量的加法来进行:减去一个向量相当于加上这个向量的相反向量。即新知探究(二):向量减法的作图方法知识探究(三):向量减法的几何意义问题六:根据问题五,思考一下向量减法的几何意义是什么?问题七:非零共线向量怎样做减法运算? 问题八:非零共线向量怎样做减法运算?1.共线同向2.共线反向小试牛刀判一判(正确的打“√”,错误的打“×”)(1)两个向量的差仍是一个向量。 (√ )(2)向量的减法实质上是向量的加法的逆运算. ( √ )(3)向量a与向量b的差与向量b与向量a的差互为相反向量。 ( √ )(4)相反向量是共线向量。 ( √ )
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.③符号语言:任意a?α,都有l⊥a?l⊥α.
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.
6.例二:如图在正方体ABCD-A’B’C’D’中,O’为底面A’B’C’D’的中心,求证:AO’⊥BD 证明:如图,连接B’D’,∵ABCD-A’B’C’D’是正方体∴BB’//DD’,BB’=DD’∴四边形BB’DD’是平行四边形∴B’D’//BD∴直线AO’与B’D’所成角即为直线AO’与BD所成角连接AB’,AD’易证AB’=AD’又O’为底面A’B’C’D’的中心∴O’为B’D’的中点∴AO’⊥B’D’,AO’⊥BD7.例三如图所示,四面体A-BCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=2.求EF的长度.解:取BC中点O,连接OE,OF,如图。∵E,F分别是AB,CD的中点,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE与OF所成的锐角就是AC与BD所成的角∵BD,AC所成角为60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1当∠EOF=60°时,EF=OE=OF=1,当∠EOF=120°时,取EF的中点M,连接OM,则OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
1、考试: 为了不让音乐考试流于旧夹克、呆板,让学生更自然地浮现音乐,表现自己对音乐的分析,为了让每个学生都有基本的理解,选择了这学期的音乐考试。让学生选择表演要领,即唱、奏、舞等。每人写500字支配的文章,内容是关于音乐的,可以是鉴赏、评价、音乐功能的尝试和探索报告等。 2、课堂教学: 坚持以审美教育为中心,重视培养学生对音乐的兴趣、兴趣和感情。通过音乐教育培养情操,启发聪明,激发学生对美的兴趣和追求。重视以学生为主体,让学生在舒适的音乐实践活动(听、看、唱、辩论、联想、想象、律动)中,积极发现、探索、感想音乐、分析音乐、浮现音乐,在肯定的基础上创造音乐。高中的音乐观赏课也参加了让学生介绍音乐,表达自己艺术见解的实践活动,锻炼了学生的能力。 缺点是重视感情、兴趣的培养,忽视了初中三年级、高中一年级学生乐理知识的传授。毕竟三者是相互作用、相互推进的。掌握乐理知识才能进一步理性地感受和分析音乐。
20**年全民国防教育日活动总结今年9月17日是我国第22个全民国防教育日。韩村中学积极响应上级号召,在9月16日——9月21日期间开展了全民国防教育日系列宣传教育活动,现将相关活动情况总结如下:一、组织开展了以国防教育为主题的国旗下讲话9月19日(周一)升旗仪式,九一班学生以“传承红色基因,汇聚强军力量”为主题进行了国旗下讲话。引导广大学生牢记历史、勿忘国耻,强化学生的国防意识。二、召开以国防教育为主题的班会活动结合本校实际,以班级为单位开展以“国防教育”为主题的班会活动。通过班会活动普及国防知识、厚植国防观念,深化爱国主义教育,引发学生爱国热忱。
主题教育开展以来,XX省审计厅对标D中央部署和省委要求,一体推进理论学习、专题调研、检视问题整改、推动发展,推动主题教育走深走实。始终把理论学习摆在首位。通过强化以上率下带动学、强化融合互促联动学、强化重点践行学、强化措施督促学,厅D委班子成员带头读原著学原文悟原理,以“专题授课讲+审计一线讲+青老联学讲”等方式为审计D员干部讲授专题D课6次,召开中心组专题学习研讨会3次,开展D支部(含审计组临时D支部)学习研讨56次,开展1次审计青年D员“书香黔审、青春悦读、岗位建功”主题读书分享会,召开1次主题教育青老联学座谈会,专题学习、反复重温对审计工作作出的重要讲话和重要指示批示。采取“请进来+走出去”方式举办1期读书班和2期处级干部培训班,多次开展专题辅导交流研讨、小组研讨、中心组集中研讨等方式,推动个人自学与集中领学、互动研学、专家导学、视频教学有机融合。主题教育读书班被省主题教育办评价等次为“好”,相关做法被省主题教育简报和《XX日报》刊载。定期督促引导审计D员干部学好“必读篇”,深学“业务篇”,掌握“最新篇”。
把学习贯彻有关主题教育系列重要讲话,与学习贯彻对福建、对民政工作的重要讲话重要指示批示精神结合起来,与学习贯彻D的二十大精神结合起来,做到一体学习、一体领会、一体贯彻。四是丰富形式“乐学”。制定局机关青年理论学习计划,开展“青年大学习”行动,结合“中秋、国庆”两节举办“感悟思想伟力、书写青春华章”青年读书分享会,开展形式多样的“三会一课”、主题D日活动,通过寓教于乐,增强学习吸引力和感染力。五是警示教育“促学”。结合全市民政系统突出问题专项治理,开展警示教育,组织全系统D员干部职工开展旁听巡听、观看警示教育片,召开警示教育大会,以案释纪、以案释法,用身边事教育人,坚定不移推进全面从严治D向纵深发展,持续营造风清气正的良好政治生态,扎实推进主题教育走深走实。六是现场交流“活学”。组织D员干部到闽西革命历史博物馆开展现场教学,深入了解革命时期闽西人民在中国共产D领导下所进行的可歌可泣的革命斗争历史,更加深切地感受、朱德等老一辈无产阶级革命家对中国革命事业作出的重大贡献,达到学思想、强D性、重实践、建新功的效果。
二、存在问题及下步打算总结ZT教育开展情况,虽然整体上较为顺利,但对照上级要求、群众期望和发展需要还有一定不足。主要表现在:一是学习浮于表面,不深入不具体,效果不理想。个别D员对ZT教育重要性认识不足,有时忙于工作,存在以业务学习代替理论学习、缩小范围选择性学习的现象,政治理论学习缺乏主动性,图完成任务,学深悟透、知行合一做得不好。二是理论学习研讨深度不够,不能活学活用,用理论指导实际工作。有的D员学习研讨被动应付,将理论分析的多,结合实际具体工作的少,没有真正将理论知识应用于实践,没有真正用的D的最新理论创新工作思路,解决实际问题。三是调查研究不深不细,了解情况不具体,解决措施不明确。有的D员还没有真正沉下心来,带着问题到一线了解实际情况,存在以座谈、走访代替调研的情况,了解实际情况不细致,没有真正发现实际问题。针对问题拟定的措施针对性不够,解决问题还不彻底。
全校各级D组织和D员干部传承弘扬在XX工作期间开创的重要理念和重大实践,立足办学定位,深入贯彻新发展理念、积极服务和融入新发展格局,聚焦培养高素质专业化中小学教师队伍、服务基础教育高质量发展的主责主业,深学争优、敢为争先、实干争效,推动学校事业高质量发展。三是在“重实践”中提升本领。学校把开展ZT教育,同贯彻落实D中央、省委各项决策部署结合起来,同推动学校中心工作结合起来,围绕学校改革发展的重点、难点,开展“突破年”活动,着力在校区建设、人才引育、培训品牌打造等XX个方面工作取得新突破。四是在“建新功”中实干担当。带着更深的感情、更高的自觉、更强的责任,深刻认识ZT教育的重大意义,牢记嘱托、感恩奋进,进一步以培育新时代基础教育强师为使命,聚焦精准培训改革,打造高质量校长教师培训体系,以建设“一流省级师范大学”的新成效检验ZT教育成果。
第三,进一步抓好问题整改落实,将主题教育问题整改与推进改革发展有机结合起来,严格对标对表,坚持统筹兼顾、标本兼治,确保整改落实全面到位,同时扎实做好第二批主题教育的谋划准备工作,确保整个主题教育上下联动、有机衔接。深刻认识检视整改是确保主题教育取得实效的关键一环,切实增强做好检视整改工作的政治自觉,坚持边学习、边对照、边检视、边整改,在抓好问题整改上下真功夫、下狠功夫,做到问题不解决不松手、整改不到位不罢休。对检视梳理的问题必须主动认领、自觉对号入座、深刻剖析根源,搞清楚是思想问题还是能力问题,是方法问题还是作风问题,是长期存在的顽瘴痼疾,还是最近才出现的急难杂症,做到真认账、真反思、真整改。从政治上认识、推进和检验整改工作,把人民群众满意不满意作为根本检验标准,增强“等不起、慢不得、坐不住”的紧迫感,把按时完成检视整改作为军令来执行,持续盯住问题不放、严格落实整改措施,确保事事有着落、件件有结果。把制度建设贯穿检视整改全过程,强化制度刚性约束,把整治成效转变为治堵效果,做到既谋当下、又管长远。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。