课件及教具的说明:课件:教学光盘。贴纸:带不同色彩的五个小标题设计意图:教学光盘可以让小朋友清楚的聆听到五段音乐,为哼唱歌曲和表演做准备。贴纸可以一方面让学生看得更清楚;另一方面在教学中使学生们更好地为乐曲起名字打好基础。六、教学反思1、重点及难点的解决效果:本课重难点解决较好,学生能分辨不同情绪的乐曲,随音乐表演在教师的指导下有了较大的进步。2、本课成功之处:(1)学生参与的积极性很高(2)特别喜欢随音乐表演,表演能力有了较大的提高。(3)能分辨不同情绪的乐曲,还能较准确的起名字,学生对音乐欣赏产生了浓厚的兴趣。3、本课失败之处:个别同学表现有难度,教师还要加强指导4、生成问题:学生在起名字和表演时都出现了较好的创编5、今后调整思路:一方面老师要加强自身业务水平的提高,另一方面在随音乐表演的环节还要加强指导。
(7) 跟老师按节奏朗读歌词(8) 轻声的和老师齐唱一遍。(老师大声学生小声)(9) 听琴慢速唱一遍,及时解决问题。(解决难点休止符)(10) 听范唱找一找歌唱的感觉。(11) 跟范唱演唱。(12) 歌曲处理:跟着少数民族的孩子一起载歌载舞的表演,边表演边带出演唱的感觉。3、 拓展:将自己的名字加在歌曲中与少数民族的孩子一起表演。全班分为六组,讨论歌曲第一句的创编,可以是同学的名字,也可以是朋友、家人的名字。分组展示本组的编创成果,歌唱时合着音乐的节拍表演。四、 教师总结1、 师:同学们今天我们一起感受了音乐带给我们的快乐,体会了祖国大团结给我们带来的喜悦,我想同学们一定能将这喜悦之情蔓延出去,同时也期待着大家更加喜欢音乐,在音乐学习中有更多的收获。
[活动目标]1、通过真实的案例让幼儿懂得随便乱吃东西的危害性。2、引导幼儿乐于探索、交流与分享,激发幼儿的想象力。3、提高自我保护的意识及应对安全事件的能力。[活动准备]真实案例《卡在喉咙里的五角星》;课件《进餐时》、《肚子为什么疼》;情景表演《好吃的鱼》;图片:1、老鼠、苍蝇叮咬过的食物。 2、过期的食物。3、腐烂变质的食物。4、假冒、劣质的食物。5、没洗干净的;每组一小筐(内有图片如:幼儿一边走一边喝水;吃饭时在说笑;吃大量的雪糕;把铅笔放入口中等)
【活动目的】1, 通过拍卖会的角色扮演活动,让学生辨析自己的价值观.2,了解每个人的价值观有所不同,进而学习尊重不同的价值观.【理论分析】人的价值观,在哲学上属于世界观,人生观范畴;在心理学上,则可以看作是一个人社会态度的重要组成部分.个人的价值观,主要受到他的社会文化背景,特别是家庭传统和教育的影响,同时也受制于一个人的个性,能力,情绪等心理因素.本活动主要是角色扮演和价值辨析两种心理辅导方法的综合运用.角色扮演的目的,在于运用戏剧表演的方法,使学生发现问题,了解冲突所在,从而洞察人际关系.由于角色扮演能使人亲身体验和实践他人的角色,从而可以更好地理解他人的处境,体验他人在各种不同情况下的内心情感,同时反应出个人深藏于内心的感情."魔术店"是角色扮演的一种方法,它是一种类似商店内买卖的方法,如让老师扮演店主,店里贩卖各种东西,学生扮演买主,通过拍卖的方式,帮助学生了解有关爱情,友情,健康,金钱等多方面的价值观念.在拍卖过程中,学生个人的价值观念会直接影响他在拍卖时的选择,学生从舍取中可以了解自己的价值观和人生态度,这样有助于学生对自己价值观念的思考和澄清."价值澄清"是美国的大学教授路易斯·拉斯等人在对传统价值观教育进行研究分析的基础上提出来的.价值澄清的目的不是灌输给学生一套事先安排的严谨的价值观,而是通过一定的过程,让学生反省自己的生活,对自己的行为负起责任,从而澄清自己的价值观.这种方法很适合在集体的情境中使用.学生可以在共同的价值辨析讨论中,经过一系列心理湖动的过程来达到主动学习,自我评估,自我改进的目的.【活动形式】小组讨论,价值拍卖会【活动准备】准备拍卖会上需要的号码牌,按学生学号做49个.【适合对象】高中一年级【活动课时】1课时【活动过程】上节课我还欠大家一个回答,关于心理辅导活动课呢,一些同学把它和心理咨询弄浑了,以为心理嘛就是要去心理咨询.个别咨询是同学有了一些困难或苦恼来找心理老师进行个别交流,寻求老师的帮助.而心理辅导课呢,面对的是全班同学,大家在一起游戏,一起交流过程中能够更好地认识自己,也能进一步了解他人,别人往往是自己的一面镜子.通过这个课,希望大家能学会自助和互助.这样说不知道大家有没有清楚一些,课后可以再一起交流,现在回到我们今天的课上.课的主题呢我先卖个关子,先听听我接下来的这个问题.
回望2020年,令人感慨万千。这一年,面对肆虐的新冠疫情,全国人民众志成城,取得抗疫斗争重大战略成果;这一年,我国经济逆风前行,走出V字形复苏曲线,中国成为全球唯一实现正增长的主要经济体;这一年,中国如期完成脱贫攻坚目标任务,提前十年完成笔扫千军整理联合国减贫目标;这一年,学校秉持“融教育”办学理念,稳步推进教育质量提升工程,高级中学一本上线38人,本科上线330人;初级中学中招500分以上22人,450分以上68人,教育教学质量在全市同类学校中名列前茅;
尊敬的老师、亲爱的同学们:大家早上好,我是来自高二六班的张昊宇,今天我国旗下讲话的题目是《爱在三月,情暖校园》。三月,有一种充满生机的希望在流淌;三月,有一种炽热的情愫在弥漫;三月,有一种深切的怀念在升腾。在这乍暖还寒的日子里,让我们行动起来,用绵外人的特有的热情去消融最后的寒意吧!让爱心在三月传递,让温情在校园洋溢,让我们用以下几个词去书写多彩的三月吧。第一个词是奉献。当春风吹绿大地,万物吐露芬芳之时,我们总会想起一个如阳光般温暖的名字―雷锋。3月5日,是“学雷锋纪念日”,同时也是“青年志愿者服务日”,让我们行动起来,向雷锋学习吧!给人一个微笑,不经意间,温暖一颗心灵;拾起一张纸片,不经意间,守护一片洁净;关掉一个开关,不经意间,增添一份光彩。阳光之所以明媚,正是无数束小光线凝集而撒向大地的结果,也许我们的行为微不足道,也许我们的行为并不引人瞩目,但只要我们携起手来,从我做起,从身边做起,就能让成千上万个雷锋成长起来!第二个是感恩。漫漫人生路,我们只有一个母亲,却有太多的“母爱”。在家里,母爱是儿时甜甜的吻、是清晨路上的几句叮咛、是眼角两旁的一条皱纹、是秋风吹散的一缕白发……在学校,母爱是润物无声教会我们打开知识大门的钥匙,是不辞劳苦帮助我们扬起理想风帆的桅杆,是无微不至拨开我们心灵阴霾的春风……
各位老师同学们早上好!今天我国旗下讲话的题目是《在书香中快乐成长》.说到书,我们很自然地想起了我们在学校学习的任务——读书.是的,课堂上,我们在老师的带领下,努力学习,认真读书.我们读的是课本,读的是语文书、数学书、科学书等等.在书中,在一句句、一篇篇奇妙的文字中,我们汲取着人类智慧的结晶,我们的大脑接受着一次次知识的洗礼,我们感受着成长的快乐.其实,读好课内的书,只是为我们读更多的课外书打下良好的基础.当我们迎着朝阳,背上心爱的小书包走进学校的大门,我们就开始拥有读书的本领.同学们,当我们学习了汉语拼音,我们开始尝试用拼音拼读课外书,看着美丽的图画,还能拼读出图画下的文字,你就会骄傲地大声地把有文字的故事读懂,故事的喜怒哀乐就会带给你无穷的快乐
只有在新时代把D的自我革命推向深入,切实解决违背初心和使命的各种问题,坚决清除一切弱化D的先进性、损害D的纯洁性的因素,才能把D建设成为始终走在时代前列、人民衷心拥护、勇于自我革命、经得起各种风浪考验、朝气蓬勃的马克思主义执政D。初心易得,始终难守。全D同志要按照提出的明确要求,必须始终保持崇高的革命理想和旺盛的革命斗志,用好批评和自我批评这个锐利武器,驰而不息抓好正风肃纪反腐,不断增强D自我净化、自我完善、自我革新、自我提高的能力,坚决同一切可能动摇D的根基、阻碍D的事业的现象作斗争,荡涤一切附着在D肌体上的肮脏东西,把我们D建设得更加坚强有力。敢于直面问题、勇于修正错误,是我们D的显著特点和优势。在新的征程上,始终牢记初心使命、不断推进自我革命,我们就一定能不断纯洁D的思想、纯洁D的组织、纯洁D的作风、纯洁D的肌体,在推动D领导人民进行的伟大社会革命中创造新的更大奇迹。
一切从实际出发,不刻舟求剑、不纸上谈兵,深入企业、深入市场,摸清真实情况、找准真正问题。坚持系统观念,统筹兼顾、系统谋划、整体推进纺织现代化产业体系建设,正确处理好顶层设计与实践探索、战略与策略、守正与创新、效率与公平、活力与秩序、自立自强与对外开放等一系列重大关系,找到产业发展的平衡点、着力点。在行业工作中,我们要在完善政策环境和规划引导方面下功夫,努力推动实现五个平衡。平衡好制造与服务。强化制造的基础地位,不能当成“低端产业”简单退出。特别是印染加工、纤维制造等科技含量高,产业影响大的领域要作为高端产业予以支持。推动三次产业融合发展,推动高端制造与现代服务一体发展。平衡好发展与安全。要全力应对大国博弈、地缘政治的深刻影响,保障原材料供应,积极推动知识、科技等要素的全球转移与循环。深化开放,优化产业链国际布局,提升产业链的安全性与竞争力。
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。