环节2:不一样的冬天情境体会由此抛出问题“为什么冬天会发生这样的现象”?因为南北方温差大的原因,环境形成鲜明的对比,让学生体会到伟大祖国的地大物博,从而激发学生的爱国热情。(板书:热爱。音乐伴奏,南北方图片出示欣赏)。相应的动植物、人们的衣着、活动以及心态都是有很大差异。儿歌总结,体现出冬天的奇妙。(板书:奇妙)环节3:冬天里的游戏小组比赛,游戏激趣1.说说“我”在冬天最喜欢玩的游戏是......因为......这一话题可以让学生对冬天产生更强烈的喜爱之情。上周四的第一场大雪让大家期盼已久,学生的第一反应是雪景美,可以打雪仗、堆雪人、打陀螺、滑雪、贴窗花、吃冰糖葫芦等。(板书:美好)2.冬天玩耍需要注意的事项,判断对错。在交流中,教师适时点拨。让学生意识到游戏虽好玩,但要注意方式方法和安全。九、【说板书设计】在板书设计中,我根据学生的特点,采用了简洁的板书形式。首先在导入的教学环节中板书课题,在第二环节以不同地方冬天对比形式板书奇妙、热爱,在第三环节通过玩耍,板书美好。
4. 小结:校园的每一个地方都那么美丽,我们要爱护,而且要安全文明地去使用校园设施,我们才会生活得更开心。教室的每一个地方也是我们都要爱护,图书角、卫生角、生物角等区域都要好好去爱护,因为教室就是我们美丽温馨的家。【设计意图】讨论学生最喜欢的地方目的在于让学生更多地增强对校园环境的喜爱,增强孩子作为小学生的自豪感。以校园不文明想象为例,继续交流,进一步引导学生学会爱护校园环境,安全使用校园设施。使他们明白只有安全、文明、有序地活动,才能让我们获得更多的快乐。(四)活动四:读一读爱护校园拍手歌1.导语:经过刚刚的讨论学习,我们懂得了如何去爱护我们的校园以及教室,也懂得了如何去安全文明使用我们的校园设施。我们要学会去爱护校园。下面,我们一起来诵读爱护校园拍手歌2.任务一:诵读拍手歌爱护校园拍手歌爱护花草,保护绿化文明有序,安全玩耍垃圾分类,不随手丢文明有礼,遵守秩序3.任务二:出示爱护校园环境图片,让学生观察图片说出文明之处。4.小结:诵读拍手歌,看了照片,同学们心中应该都知道了如何爱护我们的校园了。
四、教学过程(一)导入新课1.播放2008年北京奥运会开幕式视频,并让学生说说感受。师:同学们,这就是集体的力量,这是一个由2008个人表演的壮观节目。其实啊,我们的班级也是一个集体,我们每一个人都是这个班集体中的一份子,但是要想做到整齐划一,离不开我们班级的每一个人的努力,这就需要我们服从指挥,听从号令。其实啊,在我们的校园里,也有一个神秘的“指挥家”,这个“指挥家”特别有威力,连老师都要听它的指挥。这么神奇的指挥家,大家猜猜是谁呢?(生预设:喇叭)(二)新授1.师:在我们的校园里有一些专属于我们特有的声音,今天我们这节课就来认识一下《校园里的号令》(板书课题:校园里的号令)2.师:我这里有一段视频,视频里的同学是怎么做的呢?(生预设:我看到大家做得都很好,我们要热爱祖国,尊敬国旗国歌,大家听到国歌都立刻站好,看向国旗。)
这个板块的活动设计通过学生对比自己和父母的童年,了解自己家庭的形成和经历的变化,激发学生热爱家庭、珍惜当下生活的情感。新课程标准下的品德与社会课堂要让学习过程成为学生完整生命投入的过程,成为其生活的一部分。因此,学生学习的过程不仅要经受认知的挑战,从中获得理智上的满足,更在情感、心灵的充盈上获得情感的体验,在回归生活的过程中进一步得到正确的价值引领。因而,在听故事、品故事之后,我又设计了欣赏歌曲这一环节。因为在教师绘声绘色的故事声中,学生不知不觉中触动了自己的情感之弦,不少学生会迫不及待地要求发言。所以,歌曲的欣赏会让更多的学生引起情感上的共鸣,让他们的情绪达到极点,从而为整堂课画上一个圆满的句号。这四个活动板块的设计,就是通过直观感知——深入了解——回忆共情——对 比感悟这样的过程来达到本课时的教学目标。
一、教材分析《走近我们的老师》是统编教材小学《道德与法治》三年级上册第二单元第 5 课,共有两个话题,本节课学习的是第一个话题《我和老师的故事》,主要是引导学生理解老师对学生的良苦用心,学会和老师沟通,旨在激发师生之情,感恩老师、理解老师。二、学情分析三年级的小学生经过两年的学校生活后,对教师的工作有了一些 了解,但仅限于与教师接触的部分,对教师课余时间做些什么、怎么 备课、教育学生的方式等方面,学生还不太了解。因此,要通过有效 的教学,帮助引导学生进一步地理解教师的工作。三、教学目标与重难点 基于教材、学情的分析,以及对小学道德与法治课程的理解,我确定了本节课的教学目标与重难点。教学目标我确定了三个。
设计意图:引导学生了解祖国的行政区域划分,从中感受国土的辽阔。活动三:祖国的每一寸土地都神圣不可侵犯学生阅读教材第47页的图文资料,结合课前查阅到的有关台湾省的资料,先小组内交流分享台湾省的美丽风光和民风民情,以及民族英雄郑成功收复台湾的故事等,再全班分享,教师相机引导,学生体会到台湾自古以来是我国领土不可分割的一部分,并板书。设计意图:引导学生知道台湾是我国领土不可分割的一部分。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸课后,以辽阔的国土为主题写一篇日记。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。
学生阅读教材第4页正文的文本,结合课前搜集到的纪律、道德与法律关系的相关资料,先在小组内讨论:你认为违反法律的后果和违反学校纪律的后果是一样的吗?再小组之间进行辩论,教师相机引导。板书:法律与纪律、道德等社会规范不同。设计意图:引导学生理解法律与纪律、道德等社会规范不同。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结本节课的主要内容,体验收获与成功的喜悦,内化提升认识与情感。环节四:布置作业,课外延伸生活中,在行使权利的同时,履行好我们的义务。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书:在黑板中上方的中间位置是课题《感受生活中的法律》,下面是:法律是什么;学生说到的权利和义务;法律与纪律、道德等社会规范不同。
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法总结:如果按照先算乘法,再算加减,则运算较繁琐,且符号容易出错,但如果逆用乘法对加法的分配律,则可使运算简便.探究点三:有理数乘法的运算律的实际应用甲、乙两地相距480千米,一辆汽车从甲地开往乙地,已经行驶了全程的13,再行驶多少千米就可以到达中点?解析:把两地间的距离看作单位“1”,中点即全程12处,根据题意用乘法分别求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到达中点.方法总结:解答本题的关键是根据题意列出算式,然后根据乘法的分配律进行简便计算.新课程理念要求把学生“学”数学放在教师“教”之前,“导学”是教学的重点.因此,在本节课的教学中,不要直接将结论告诉学生,而是引导学生从大量的实例中寻找解决问题的规律.学生经历积极探索知识的形成过程,最后总结得出有理数乘法的运算律.整个教学过程要让学生积极参与,独立思考和合作探究相结合,教师适当点评,以达到预期的教学效果.
1、掌握有理数混合运算法则,并能进行有理数的混合运算的计算。2、经历“二十四”点游戏,培养学生的探究能力[教学重点]有理数混合运算法则。[教学难点]培养探索思 维方式。【教学过程】情境导入——有理数的混合运算是指一个算式里含有加、减、乘、除、乘方的多种运算.下面的算式里有哪几种运算?3+50÷22×( )-1.有理数混合运算的运算顺序规定如下:1 先算乘方,再算乘除,最后算加减;2 同级运算,按照从左至右的顺序进行;3 如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。 加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。注意:可以应用运算律,适当改变运算顺序,使运算简便.合作探究——
分析:(1)(2)用乘法的交换、结合律;(3)(4)用分配律,4.99写成5-0.01学生板书完成,并说明根据什么?略例3、某校体育器材室共有60个篮球。一天课外活动,有3个班级分别计划借篮球总数的 , 和 。请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?解:=60-30-20-15 =-5答:不够借,还缺5个篮球。练习巩固:第41页1、2、7、探究活动 (1)如果2个数的积为负数,那么这2个数中有几个负数?如果3个数的积为负数,那么这3个数中有几个负数?4个数呢?5个数呢?6个数呢?有什么规律? (2)逆用分配律 第42页 5、用简便方法计算(三)课堂小结通过本节课的学习,大家学会了什么?本节课我们探讨了有理数乘法的运算律及其应用.乘法的运算律有:乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理数的运算中,灵活运用运算律可以简化运算.(四)作业:课本42页作业题
1.掌握有理数混合运算的顺序,并能熟练地进行有理数加、减、乘、除、乘方的混合运算.2.在运算过程中能合理地应用运算律简化运算.一、情境导入在学完有理数的混合运算后,老师为了检验同学们的学习效果,出了下面这道题:计算-32+(-6)÷12×(-4).小明和小颖很快给出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小颖:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判断出谁的计算正确吗?二、合作探究探究点一:有理数的混合运算计算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算;(2)题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.
2.比较物体的高度和影长时,要在同一( )、同一( )进行。3.在同一时间、同一地点,物体的高度和影长成( )比例。4.同样高度的物体在不同时间、不同地点测出的影长是会( )的。 5、李明在操场上插上几根长短不同的的竹竿,在同一时间里测量这几根竹竿的长和相应的影长情况如下表: 竹竿长/米11.21.8245影长/米0.50.60.9122.5比值 (1)算出竹竿和影长的比值,并填在表格中。 (2)通过测量和计算,你发现了什么? (3)这时李明测出旗杆的影长是5米,你能求出旗杆的实际高度是多少米? (4)这时王刚测出一棵松树的影长是2.4米,你能算出这棵松树的实际高度吗? 6、为了测量出学校旗杆的高度,同学们找来了一根长8分米的木棍立在旗杆旁,发现木棍的影长是6分米,同时又发现旗杆的影长是7.5米,你能求出旗杆的高度吗? 7.在同一时刻,小璐测得她的影长为1米,距她不远处的一棵槐树的影长为5米。已知小璐的身高为1.3米,这棵槐树的有多高。
提问:1.怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系? 2.判断下面两种量是否成正比例?为什么? (1)时间一定,行驶的路程和速度 (2)除数一定,被除数和商 3.单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例? 4.导入新课: 如果总价一定,单价和数量的变化有什么规律?这两种量存在什么关系?今天,我们就来研究这种变化规律。
1.能从统计图中获取信息,并求出相关数据的平均数、中位数、众数;(重点)2.理解并分析平均数、中位数、众数所体现的集中趋势.(难点)一、情境导入某次射击比赛,甲队员的成绩如下:(1)根据统计图,确定10次射击成绩的众数、中位数,说说你的做法,并与同伴交流.(2)先估计这10次射击成绩的平均数,再具体算一算,看看你的估计水平如何.二、合作探究探究点一:从折线统计图分析数据的集中趋势广州市努力改善空气质量,近年空气质量明显好转,根据广州市环境保护局公布的2006~2010年这五年各年的全年空气质量优良的天数,绘制成折线图如图所示.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是________;(2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是________年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.解析:(1)由图知,把这五年的全年空气质量优良天数按照从小到大的顺序排列为:333,334,345,347,357,所以中位数是345;
一、说教材(教材分析): 1. 教材所处的地位和作用: 本节内容在全书和章节中的作用是:《 》是 版数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。2. 教育教学目标: 根据上述教材分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标: (1)知识目标: (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力;
二、互动交流,理解算法1.出示教科书第22页的情境图,提问:他们在干什么?你获得了什么信息?能提出什么问题?怎样列式?2.师:今天我们就学习一位数除三位数的计算方法。(板书课题:一位数除三位数)3.师:怎样计算238÷6呢?你能用估算的方法估计出大致结果吗?4.学生尝试独立完成例3的竖式计算。师:在这道题中被除数最高位上是2个百,2个百除以6,商不够1个百怎么办?师:谁能说一说商3个十的3写在商的什么位置上?为什么?教师边板演边说明:用除数6去乘3个十,积是18个十,表示被除数中已经分掉的数,写在23的下面。23减18得5,表示十位上还剩5个十。师:接下来该怎么办?(把被除数个位上的8落下来,与十位上的5合起来继续除。)师:最后结果是多少?5.启发学生想一想:如果一本相册有24页,一本相册能插得下这些照片吗?2本呢?
在探究估算方法的时候,教师要注重适时的引导,以免让学生无从下手.在教学过程中一定要让学生体会估算的实用价值,了解到“数学既来源与生活,又回归到生活为生活服务”.(二)课堂评价的一些思考在教学中要多鼓励学生用自己的语言表达他们的想法,在估算的过程中多给予适当的引导和评价,让学生逐步把握估算的方法,找到解决问题的信心.比如对“画能挂上去吗”这个问题情境,学生可能提出不同的看法,有些学生可能认为可以挂上去,因为人还有身高,完全可以弥补梯子稳定摆放的高度和挂画位置的高度之间的差距,有些学生可能认为,人不可能爬到梯子的顶部,加上人如果本来比较矮,画就不能挂上去等等想法,教师都应该给予肯定,这样才能激发学生思考问题的热情,调动学生探究问题的积极性.作为教师,一定要尊重学生的个体差异,满足多样化的学习需要,鼓励探究方式、表达方式和解题方法的多样化.
一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大正方形,那么有a2=2,a=________,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫做x的平方,反过来x叫做a的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.
1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数 的平方等于 ,即 ,那么这个正数 就叫做 的算术平方根,”的“正数 ”,即被开方数是正的,由平方的意义, 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.
1、如图,OA、OB是两条射线,C是OA上一点,D、E是OB上两点,则图中共有 条钱段、它们分别是 ;图中共有 射线,它们分别是 。2、如果线段AB=5cm,BC=3cm,那么A、C两点间的距离是 3、(1)用度、分、秒表示48.26° (2)用度表示37°28′24″ 4、从3点到5点30分,时钟的时针转过了 度。5、一轮船航行到B处测得小岛A的方向为北偏西30°,则从A处观测此B处的方向为( ) A. 南偏东30° B. 东偏北30° C. 南偏东60° D. 东偏北60°6、已知,OA⊥OC,∠AOB∶∠AOC=2∶3,则∠BOC的度数为( )A. 30° B. 150° C. 30°或150° D. 不同于上述答案7、如图,AO⊥OB,直线CD过点O,且∠BOD=130°,求∠AOD的大小。8、已知:如图,B、C两点把线段AD分成2∶4∶3三部分,M是AD的中点,CD=6,求:线段MC的长。9、平面上有n个点(n≥2)且任意三个点不在同一直线上,经过每两个点画一条直线,一共可以画多少条直线?迁移:某足球比赛中有20个球队进行单循环比赛(每两队之间必须比赛一场),那么一共要进行多少场比赛?