二、非选择题【原创】11.以下是三个初中生的生活片段,请你运用所学知识,回答问题。片段一:上了初中的小伟感觉自己患上了“中二病",觉得现实的自己和想象 中的自己越来越脱节。在现实生活中越来越喜欢独处,不喜欢与他人交流;但是 却总是有着天马行空般的想象,认为自己将会“拯救世界”,成为英雄。片段二:阴阴说:“自从上了初中之后,妈妈越来越不理解我了,总是过多的 干涉我的生活,我常常在学习和生活上和妈妈发生争执。"片段三:小孙从小学时各科成绩就很优秀,上了初中后科目变得更多了,但小 孙仍然不惧困难,保持着勤奋的学习态度。但是他却发现自己不像小学时上课敢 主动回答问题了,老师提出的问题即使自己能够回答得出来也不再主动举手了。(1) 请问以上三个片段分别体现了青春期怎么样的心理矛盾。(2) 以上心理矛盾可能会产生怎样的影响?(3) 该如何克服青春期产生的心理矛盾呢?
老师们,同学们,大家早上好。这是一个由乐高积木拼成的尼克狐的头部。这是完成的下半身。现在,中间的身子和下半身拼在了一起,就等安上头部就ok了。哇呀!终于完成了。一个高将近1.8米的尼克狐,由上万块乐高积木组成,价值10万多元。年轻的作者陈叔叔为了制作它,三天三夜不眠不休。但是,这件作品展出了1个小时后,有个4、5岁的小男孩钻进隔离区域,在合影的过程中,他推了一下尼克。尼克狐瞬间碎成了一堆渣子。有个正在8楼屋内看动画片《喜羊羊》的10岁男孩,因嫌楼外施工的电钻声太吵,一气之下,用小刀子将施工者下方的安全绳割断,致使其悬在半空动弹不得,经消防大队紧急出动后才将人安全救下。去年4月,有一个成都的女子在机场出境时被拦,原来是自家孩子在港澳通行证上涂鸦,不能使用了。
同志们:过去的一年,大家干的很充实,走的很坚定,拼的很努力,各条战线成绩斐然。今年随着疫情防控政策优化,拼经济、争项目、抢招商也已经成为全国各地开局的共识,就我省来说,上班第一天,就组织开展了第七期“三个一批”活动,第二天,市里又接着召开全市项目建设和招商引资动员大会,通过这几天的高密度工作,都充分释放出一个信号,今年注定是奋力拼抢、紧张忙碌的一年,也必将会成为硕果累累、充满喜悦的一年。今天,我们召开2023年全区项目建设和招商引资动员大会,就是要动员全区上下进一步树牢“争”的意识、焕发“抢”的斗志、拿出“拼”的行动,项目为王抓投资,开足马力拼经济,确保实现“开门红、全年红”。下面,我讲四点意见。一、全面发力拼项目坚持一切工作向项目发力,一切要素向项目集中,一切服务向项目聚集,迅速发起项目建设新攻势,强劲注入振兴发展新动能。一要做实项目谋划储备。经过优化调整,今年全区首批谋划项目X个,总投资X亿元,年度计划完成投资X亿元。实事求是的说,我们的项目盘子还不够大,总投资仅占全市的6.7%,年度计划完成投资仅占全市的6.2%。要支撑全年经济增长7%以上的目标,我们必须持续加大项目谋划包装储备力度,加快形成大项目顶天立地、小项目铺天盖地、大小项目百舸争流的生动局面。
老师们同学们大家早上好,我是来自高三七班的胡祎珩。今天我演讲的题目是“请以耐性爱上这单调的三年”。你是否感到深陷囹圄,被幽囚在这方寸土,这个时间。你以为所谓的青春,只是在想撕碎四四方方的白卷,在想抹去手中永不停歇的笔所落下的墨点中挣扎,却又无计可施。所以你感到乏味。也许,只是因为你并未爱上。爱上这些单调冗杂的日子。和大家分享《约翰·克里斯朵夫》中的一段话:“你得对着新来的日子抱着虔诚的心……对每一天都得抱着虔诚的态度。得爱它,尊敬它,尤其不能侮辱它,妨害它的发荣滋长。便是像今天这样灰暗愁闷的日子,你也得爱……现在是冬天,一切都睡着了。将来大地会醒过来的,你只要跟大地一样,像它那样有耐性就是了。”正如书中所说,爱上这些仿佛无限循环的日子,要有耐性。打开搜索引擎搜索这两字,得到的心理学释义是:坚持,自制力,积极的态度等。就这三点,向大家提出以下三点建议:一,坚持。千里大堤一沙一石的积累,才能有前不见头,后不见尾的壮丽;慈悲我佛一天一日的修善,才能有普渡众生,大爱天下的情怀。量变引起质变,你必须明白,时间的积累,重复的循环,是多么重要。
同学们:时光如梭,转眼间,一个学期就要结束了,我们又迎来了紧张而忙碌的期末复习。面对着崭新的XX年,面对着一学期的最后冲刺,我们怎样才能信心满怀地去耕耘、去收获,争取优异的成绩呢?今天,我在这里就与大家简单谈谈怎样进行期末复习的话题。首先,要制定合理的复习目标计划。我们可以对这学期的学习作出整体的设想,对近期的学习进行恰当的安排,做到复习心中有数。二是要认真梳理知识。在老师的指导下,对各学科进行系统的复习归类,既要对每个单元进行细致复习,又要对整体进行重点把握,理清知能要点,构建知能网络。三是抓住重点。对于学习中的重点内容要强化学习,举一反三。基础薄弱的同学可以抓住重点基础知识的复习,基础好的同学可以适当拓展和提高。
甲 方: 合作联系人: 电 话:传 真:手 机:地 址: 邮 编:电 邮:乙方: 身份证号码:身份证住址:现住地址:联系电话:双方本着自愿平等互利双赢的原则,经友好协商达成共识,甲方聘请乙方为公司的签约歌手,乙方成为甲方中国电信签约艺人。为规范双方在协议期间的权利、义务,特制定本协议。一、 乙方的权利与义务1、 乙方的权利1) 可以获得甲方原创音乐作品的演唱授权。2) 乙方非中国电信的公开的、商业性的活动可以不获得甲方的许可,包括接受媒体的访问、承接媒体广告、商业演出、出席各种公益或者非公益活动等。3) 可获得甲方自有电信渠道所有推广。4) 可以得到甲方网站指定专业音乐人士的专业指导与点评。5) 优秀歌手,可以免费享受其演唱歌曲的专业制作效果以及混缩。6) 可以享受甲方网站提供的专门宣传页面。7) 优秀歌手可以获得甲方为其免费拍摄专题MV的机会。8) 可以获得中国电信为其提供的“音乐巡演”演出及宣传机会。
二、教学目标: 基于以上设计理念与教材简析,第一课时的教学目标定为: 1、多层次地朗读感悟第一、二自然段,感受体验liu伯承求治的镇定与手术前的坚定,产生敬佩之情。 2、读中悟法:回读感受、联系生活是朗读产生体验的好方法。 三、设计特色: 营造积极主动、用心投入的读书氛围,在由浅入深的朗读实践中自主解疑、探究、发现、感悟,在读中实现与作者、与文中沃克医生和军神liu伯承、与师生多维的对话过程,对liu伯承的钢铁意志受到强烈的内心震撼,并在回顾读书过程中.总结方法。整个设计,感性的读书探究中享受着无穷的读书乐趣,理性的读书解疑中体验着成功的无限快乐!
本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力.课程目标1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型. 数学学科素养1.逻辑抽象:实际问题抽象为三角函数模型问题;2.数据分析:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型; 3.数学运算:实际问题求解; 4.数学建模:体验一些具有周期性变化规律的实际问题的数学建模思想,提高学生的建模、分析问题、数形结合、抽象概括等能力.
《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的救开结合思想将贯穿于我们整个高中数学教学。
本节通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.数学学科素养1.数学抽象:建立函数模型,把实际应用问题转化为数学问题;2.逻辑推理:通过数据分析,确定合适的函数模型;3.数学运算:解答数学问题,求得结果;4.数据分析:把数学结果转译成具体问题的结论,做出解答;5.数学建模:借助函数模型,利用函数的思想解决现实生活中的实际问题.重点:利用函数模型解决实际问题;难点:数模型的构造与对数据的处理.
【例3】本例中“p是q的充分不必要条件”改为“p是q的必要不充分条件”,其他条件不变,试求m的取值范围.【答案】见解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因为p是q的必要不充分条件,所以q?p,且p?/q.则{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范围是(0,3].解题技巧:(利用充分、必要、充分必要条件的关系求参数范围)(1)化简p、q两命题,(2)根据p与q的关系(充分、必要、充要条件)转化为集合间的关系,(3)利用集合间的关系建立不等关系,(4)求解参数范围.跟踪训练三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要条件,求实数a的取值范围.【答案】见解析【解析】因为“x∈P”是x∈Q的必要条件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范围是[-1,5].五、课堂小结让学生总结本节课所学主要知识及解题技巧
本课是高中数学第一章第4节,充要条件是中学数学中最重要的数学概念之一, 它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.A.正确理解充分不必要条件、必要不充分条件、充要条件的概念;B.会判断命题的充分条件、必要条件、充要条件.C.通过学习,使学生明白对条件的判定应该归结为判断命题的真假.D.在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.
本节课在已学幂函数、指数函数、对数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反应.而本节课重在研究不同函数增长的差异.课程目标1.掌握常见增长函数的定义、图象、性质,并体会其增长的快慢.2.理解直线上升、对数增长、指数爆炸的含义以及三种函数模型的性质的比较,培养数学建模和数学运算等核心素养.数学学科素养1.数学抽象:常见增长函数的定义、图象、性质;2.逻辑推理:三种函数的增长速度比较;3.数学运算:由函数图像求函数解析式;4.数据分析:由图象判断指数函数、对数函数和幂函数;5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结函数性质.重点:比较函数值得大小;难点:几种增长函数模型的应用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.3节《不同增长函数的差异》 是在学习了指数函数、对数函数和幂函数之后的对函数学习的一次梳理和总结。本节提出函数增长快慢的问题,通过函数图像及三个函数的性质,完成函数增长快慢的认识。既是对三种函数学习的总结,也为后续导数的学习做了铺垫。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1.了解指数函数、对数函数、幂函数 (一次函数) 的增长差异.2、经过探究对函数的图像观察,理解对数增长、直线上升、指数爆炸。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;3、在认识函数增长差异的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学。 a.数学抽象:函数增长快慢的认识;b.逻辑推理:由特殊到一般的推理;
《函数的单调性与最大(小)值》是高中数学新教材第一册第三章第2节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。学生在初中已经学习了一次函数、二次函数、反比例函数的图象,在此基础上学生对增减性有一个初步的感性认识,所以本节课是学生数学思想的一次重要提高。函数单调性是函数概念的延续和拓展,又是后续研究指数函数、对数函数等内容的基础,对进一步研究闭区间上的连续函数最大值和最小值的求法和实际应用,对解决各种数学问题有着广泛作用。课程目标1、理解增函数、减函数 的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.数学学科素养
等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小. 3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。
本节课选自《普通高中课程标准实验教科书数学必修1》5.6.2节 函数y=Asin(ωx+φ)的图象通过图象变换,揭示参数φ、ω、A变化时对函数图象的形状和位置的影响。通过引导学生对函数y=sinx到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂、由特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法;通过对参数φ、ω、A的分类讨论,让学生深刻认识图象变换与函数解析式变换的内在联系。通过图象变换和“五点”作图法,正确找出函数y=sinx到y=Asin(ωx+φ)的图象变换规律,这也是本节课的重点所在。提高学生的推理能力。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。
本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.课程目标 学科素养A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.数学抽象:函数解析法及能由条件求函数的解析式;2.逻辑推理:求函数的解析式;
课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。