解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
2、讲授新课:(35分钟)通过教材第一目的讲解,让学生明白,生活和学习中有许多蕴涵哲学道理的故事,表明哲学并不神秘总结并过渡:生活也离不开哲学,哲学可以是我正确看待自然、人生、和社会的发展,从而指导人们正确的认识和改造世界。整个过程将伴随着多媒体影像资料和生生对话讨论以提高学生的积极性。3、课堂反馈,知识迁移。最后对本科课进行小结,巩固重点难点,将本课的哲学知识迁移到与生活相关的例子,实现对知识的升华以及学生的再次创新;可使学生更深刻地理解重点和难点,为下一框学习做好准备。4、板书设计我采用直观板书的方法,对本课的知识网络在多媒体上进行展示。尽可能的简洁,清晰。使学生对知识框架一目了然,帮助学生构建本课的知识结构。5、布置作业我会留适当的自测题及教学案例让同学们做课后练习和思考,检验学生对本课重点的掌握以及对难点的理解。并及时反馈。对学生在理解中仍有困难的知识点,我会在以后的教学中予以疏导。
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本课是高中数学第一章第4节,充要条件是中学数学中最重要的数学概念之一, 它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.A.正确理解充分不必要条件、必要不充分条件、充要条件的概念;B.会判断命题的充分条件、必要条件、充要条件.C.通过学习,使学生明白对条件的判定应该归结为判断命题的真假.D.在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.
【例3】本例中“p是q的充分不必要条件”改为“p是q的必要不充分条件”,其他条件不变,试求m的取值范围.【答案】见解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因为p是q的必要不充分条件,所以q?p,且p?/q.则{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范围是(0,3].解题技巧:(利用充分、必要、充分必要条件的关系求参数范围)(1)化简p、q两命题,(2)根据p与q的关系(充分、必要、充要条件)转化为集合间的关系,(3)利用集合间的关系建立不等关系,(4)求解参数范围.跟踪训练三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要条件,求实数a的取值范围.【答案】见解析【解析】因为“x∈P”是x∈Q的必要条件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范围是[-1,5].五、课堂小结让学生总结本节课所学主要知识及解题技巧
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
导语在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识,定性的研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长” 是越来越慢的,“指数爆炸” 比“直线上升” 快得多,进一步的能否精确定量的刻画变化速度的快慢呢,下面我们就来研究这个问题。新知探究问题1 高台跳水运动员的速度高台跳水运动中,运动员在运动过程中的重心相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+4.8t+11.如何描述用运动员从起跳到入水的过程中运动的快慢程度呢?直觉告诉我们,运动员从起跳到入水的过程中,在上升阶段运动的越来越慢,在下降阶段运动的越来越快,我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v ?近似的描述它的运动状态。
情景导入:......运用情景营造气氛,激发学生的求知欲望,帮助学生联系现实问题,学习历史,拉近历史与现实的距离,引导学生关注时政热点,关心国家大事。自主学习:组织学生阅读课文,老师参与学生阅读活动并板书知识结构。通过学生自主学习,培养学生自学能力,为进一步好好学习打下基础。交流学习:学生自学以后,老师引导学生相互交流自学成果,学生自主提出问题,相互解答,从而达到生生互动、师生互动,在互动中学习,共同提高
1、教材分析 本课选自普通高中课程标准实验教材,人民教育出版社历史必修(1),第六单元:现代中国的政治建设与祖国统一,第22课——祖国统一大业。祖国统一始终是中国人民的共同夙愿。本课内容主要叙述了“一国两制”的伟大构想,为完成祖国统一大业提出了一个创造性的指导方针。香港、澳门的回归,是“一国两制” 伟大构想的成功实践。在“一国两制”方针指导下,海峡两岸实现了一次历史性的突破。揭示了“一国两制” 的构想,对推动完成祖国完全统一大业,实现中华民族伟大复兴具有现实指导意义。 2、学情分析通过调查知道,学生对本节的基本史实有一定了解。但是,高一新生习惯于知识的记忆和教师的讲解,不能深入分析历史现象的内涵和外延;不能进一步探究事物的因果关系和理解事物的本质;并且需要进一步拓展思维的广度和深度,实现从一维目标到三维目标的飞跃。
3、在学生已有了乘法口诀的数学模式后,引导学生运用已有经验,亲自参与其它乘法口诀的学习,充分发挥学生的主体作用,发展学生的思维。4、多采用提问让学生思考的方法,让学生在操作过程中想老师提出的问题,培养学生的抽象概括能力。如:在摆了两根小棒后问学生:现在摆了几根小棒?可以用几表示?摆了几个2根?用乘法算式应怎样表示等。5、运用磁性黑板摆实物,让学生能够通过观察实物直观感知,如:问2个2是多少?学生实在不能想的可以通过看图数数来完成,这样便可以照顾学习有困难的学生。学生已经对乘法的含义有了初步的理解,掌握口诀就比较容易;但是,要熟记乘法口诀并准确的运用还需花较大的精力和时间,因此,要引导学生学会由加法到乘法,再到口诀的归纳法,由易到难,循序渐进的方法。如:2个2,可以用加法22=4,再到写乘法算式2×2=4,再归纳出口诀“二二得四”;先引导学生说出1个2是多少?编出口诀,再引导说出2个2是多少,编出口诀等等。
4、学习有关0的加减法我为学生创设一个丰富的问题情境,鼓励学生大胆发表自己的意见并进行交流,在情景中亲身体验关于0的加减法计算及在生活中的应用。用3只小鸟飞走了的情景图,教学得数是0的减法的意义;通过两片荷叶上的青蛙图,教学有关0的加法。出示图画,让学生仔细观察,互相交流说说看懂了什么,并根据图意列出算式,理解算式所表示的意思,,集体交流不同想法然后举出生活中这样的例子。在这一环节的教学中,我充分利用教材资源,将原来教材中静态的图动态化,让学生在生动、有趣的情境中学习数学。然后,创设情境,用所学来的知识帮助学习伙伴解决难题,激发学生强烈的探究,解疑的欲望。最后,通过学习过程中所列出的算式,让学生自己总结、归纳出有关0的加减法算式的规律,体验成功的乐趣。
新《课程标准》中指出:“数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程,数学教学应从学生的实际出发,创设有助于学生学习的问题情境,引导学生思考、探索、交流、获得知识,形成技能,发展思维,学会学习,促使学生在教师指导下主动地、富有个性地学习。”整节课以动画人物情境贯穿于始终,充分调动学生学习的积极性和主动性,来完成本课的教学任务。上课伊始我播放一首学生熟悉的动画片《虹猫蓝兔七侠传》的片头曲《人生不过一百年》,创设教学情境,贴近学生的生活,自然引出7个动画人物。不仅复习了1—5,而且顺利引出新课。接下来的探究新知阶段,继续以为七剑合壁解决困难为情境线索,将新知自然呈现在学生的面前,使学生通过自主、合作探究的学习方式,完成6和7的数数、认数、数序、比较大小、序数意义以及书写的学习。
2、教材所处的地位和重、难点:表内乘法是学生学习乘法的开始,它是学生今后学习表内除法和多位数乘、除法的基础。教材内容的呈现是在学生学“2—5的乘法口诀”以后。由于他们已经具有学习2—5的乘法口诀的基础,所以教材的呈现形式没有给出一个完整的乘法算式和一句完整的口诀,意在让学生主动探索归纳出6的乘法口诀。体现了提高学生学习独立性要求的编写意图。熟练口算表内乘法,是每个学生应具备的最基本的计算能力。因此,本课的重点应该是让学生理解6的乘法口诀的形成过程;难点是怎样去熟记并利用乘法口诀来解决生活中的实际问题。3、教学目标:①通过观察、探索,使学生知道6的乘法口诀的形成过程。②通过教学活动,培养学生观察能力、判断能力、合作交流和语言表达能力。③让学生体验生活中处处有数学,会用数学知识解决生活中的问题。
一、创设情境,导入新课教师边放课件边讲故事):今天老师给你们讲一个“猴妈妈分桃”的故事。有一天,一群小猴到山下去玩,走着走着,看到一棵桃树上结满了又大又红的桃,就摘了很多。回家后,猴妈妈看到小猴们拿了这么多桃回来,可高兴了,说:“妈妈分桃给你们吃。”二、合作交流,探索新知1、动手操作,探究方法(1)提出问题。师:小猴摘了多少个桃?准备每只小猴分3个,可分给几只猴子?(板书:12个桃,每只小猴分3个,可以分给几只小猴?)(2)学生列式:12÷3=(3)分一分学生小组合作,动手分一分。(可以用其他的物体代替)(4)说一说分的过程可能有以下几种:第一种:先分给第一只小猴3个桃,再分给第二只小猴3个桃,然后给第3只小猴3个桃,最后3个桃正好分给第四只小猴。……12个桃可分4只猴子。
新课程理念下的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生要有充分的从事数学活动的时间和空间,并有机会分享自己和他人的想法与成果。为此,教学时我注意让每一个学生都积极参与数学学习活动,关注学生个性差异,加强师生和生生之间的多向交流,培养学生的合作精神。既注重学生的独立思考,又注重学生的合作学习。努力做到:学生自己能做的,教师不做;学生自己能说的,教师不说;学生自己能探索出的结论,教师不教。设计本节课时,我主要考虑到以下三点:1、创设情境,感受验算的作用。2、提供足够的探究空间。3、利用情境充分理解除法算式各部分之间的关系。本课的教学重点是让学生会用乘法对除法进行验算,体验乘法验算的优越性。教学中我紧紧抓住教学重点来突破教学难点。教学环节过度自然,知识层层递进。在课件的辅助下,以形象的画面调动了学生探究问题的欲望,在解决问题中引导、启发学生总结出了验算的方法。
二、数数活动,认识“十万”。1、用多媒体出示课本第2页第一幅图,让学生看图数一数共有多少个?再让学生在计数器上拨一拨,并写出这个数。(说明:第一个数一数活动是使学生回顾万以内数的认识,引出“个”“十”“百”“千”的数学模型小方块和计数器。)2、用多媒体出示第二幅图,(学生:哇,好多啊!)师:你能数一数一共有多少个吗?(大部分学生会感到困难)3、运用第一个数数活动中:一个大正方体是“一千”的数学模型,指导学生用100张“一千”的卡片来代替摆一摆、数一数。4、全班交流,逐步引导出先数出一万,然后一万一万来数的方法。(说明:在课堂教学中不可能直接让学生数这么多的小方块,所以我让学生制作了100张“一千”的卡片代替来完成这第二个数一数活动,从而让学生有了“10个一万是十万”的直观体验!)
在汇报的过程中互相判断,我适时的用反例来加以说明,引导学生在争论中逐步形成对三角形的正确认识,得出:由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。再让学生根据三角形的意义来解释判断题中没选中的图形为什么不是三角形,从而加深对三角形意义的理解。【设计意图:让学生画三角形、判断三角形使学生感觉到自己在玩中学,在学中玩,发挥学生的主体作用,学生经过独立思考、逐步探索和相互交流后,可以加深对三角形的认识,有效的突破本节课的重点。】3、用字母表示三角形告诉学生为了表达方便,可以用字母分别表示三角形的三个顶点,用A、B、C表示这个三角形的三个顶点,这个三角形就可以表示成三角形ABC。(同时板书三角形ABC。)让学生选择三个字母表示出自己画的三角形,培养学生的符号感。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。