二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
当A,C颜色相同时,先染P有4种方法,再染A,C有3种方法,然后染B有2种方法,最后染D也有2种方法.根据分步乘法计数原理知,共有4×3×2×2=48(种)方法;当A,C颜色不相同时,先染P有4种方法,再染A有3种方法,然后染C有2种方法,最后染B,D都有1种方法.根据分步乘法计数原理知,共有4×3×2×1×1=24(种)方法.综上,共有48+24=72(种)方法.故选B.答案:B5.某艺术小组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?解:由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人记为甲),只会钢琴的有6人,只会小号的有2人.把从中选出会钢琴与会小号各1人的方法分为两类.第1类,甲入选,另1人只需从其他8人中任选1人,故这类选法共8种;第2类,甲不入选,则会钢琴的只能从6个只会钢琴的人中选出,有6种不同的选法,会小号的也只能从只会小号的2人中选出,有2种不同的选法,所以这类选法共有6×2=12(种).因此共有8+12=20(种)不同的选法.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
问题1. 用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?因为英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出26+10=36种不同的号码.问题2.你能说说这个问题的特征吗?上述计数过程的基本环节是:(1)确定分类标准,根据问题条件分为字母号码和数字号码两类;(2)分别计算各类号码的个数;(3)各类号码的个数相加,得出所有号码的个数.你能举出一些生活中类似的例子吗?一般地,有如下分类加法计数原理:完成一件事,有两类办法. 在第1类办法中有m种不同的方法,在第2类方法中有n种不同的方法,则完成这件事共有:N= m+n种不同的方法.二、典例解析例1.在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,如表,
敬爱的老师们、亲爱的同学们:大家上午好!我是三二中队的......我今天讲话的主题是“安全常记心中”生活中什么最重要?是安全。只有生命安全有保障,一切才会有意义。当同学们听到有关小学生意外伤害事故时,不知道你们想了些什么?那些血淋淋的教训无论发生在谁的身上,都会给家人和朋友带来沉痛的打击。安全问题关系到我们每一位同学,我们从小就应该牢固地树立安全意识,保护我们的人身安全。这里,我向全体同学发出倡议:一、路途安全方面1、上学、放学途中要遵守交通规则,未满十二周岁不允许骑自行车上学。2、途中不玩火、不玩水,不乘坐违规车辆。3、放学按时离校,不在校园、放学途中逗留,及时回到家中。不与陌生人交往,不接受陌生人馈赠的物品。
同学们早上好!过了这周,同学们就要回家过寒假,过新年了,我想同学们都很高兴,因为辛苦了一学期后,寒假里可以好好地玩一玩了.今天我在这里讲话的题目是《安全教育心中记》,希望同学们能安安全全度过一个美好的假期.有个小朋友叫强强,他和其他小朋友一样,特别喜欢看动画片.这天,他看到动画片《圣斗士》时,看到高兴时便模仿片中"圣斗士"威猛的动作,大叫着用头向毫无防备的妈妈撞去.结果,妈妈没怎么着,强强自己却把头撞进了脖子里,头不能动,痛得哇哇大哭.经医生诊断,强强上颈椎脱位骨折.幸好,经过骨科专家采用中药热敷和设法整复,一周后,强强的脖子渐渐能转动自如了.看,模仿电视片中的惊险动作有多危险呀!
寒假里同学们都喜欢烟花爆竹,选购时一定要选择正规厂家生产的,玩耍时也要严格按照要求,不能把烟花对着自己和他人,不能把爆竹拿在手上引爆.假期里同学们也不要在路边购买小摊贩的"三无"食品,以免出现肚子疼,腹泻甚至中毒的情况.至于骑车,追逐玩耍等,千万不要在公路上进行,在安全的地方进行时,也要小心.同学们,为了度过一个愉快的寒假,我们要树立安全意识,掌握一些必要的安全知识,预防不安全的事件发生.最后祝愿大家假期里都能快快乐乐,平平安安!
各位老师、亲爱的同学们:大家好!今天我讲话的题目是《安全常系心中》。你们知道生活中什么最重要吗?是安全。只有保证我们生命和生活的安全,一切才有意义。当同学们听到有关小学生意外伤害事故时,不知道你们想了些什么。我想,同学们至少会想到:这些教训无论发生在谁的身上都会给受害者人身造成伤害、甚至死亡;会给受害者家庭造成极大的损失;会给学校正常教学秩序造成混乱;会给社会造成不稳定影响。安全问题关系到我们每一位学生的切身利益,只有安全才能为我们保驾护航。在这里,我向全体同学发出倡议:1、校内课间不追逐打闹,上下楼梯慢步轻声,靠右行。2、放学按时离校,不在校园内逗留。
今天清晨是中秋节假期后开学的升旗仪式,再有几天就是共和国62诞辰,就讲了关于国庆节的话题。老师们、同学们:今天我讲话的题目是《爱国,是民族的灵魂》。中秋假期刚过,再过几天又是国庆假期了。国庆意味着什么呢?其实“国庆节”如今在一部分人们的形象中,只是个黄金周、长一点的节假日,绝大多数人都做着与国庆节无关的事情。国庆节应该是全国人民的政治节日。这个节日是教育人民爱国爱家的最好时机。中华民族是一个伟大的民族。爱国,是一个神圣的字眼,在历史发展的曲折过程中,爱国主义历来是我国人民所崇尚的。回顾中华民族的历史长河,无数为国家无私奉献的民族英雄至今活在我们心中。古代,有南宋的岳飞,明代的郑成功……近代,为了保卫国家,反抗帝国主义的侵略,更是有许多仁人志士为捍卫民族主权而慷慨就义。新中国成立以后,有很多杰出人物,如邓稼先、华罗庚、钱学森等等,他们放弃国外荣华富贵的生活,回到贫穷的祖国,为国家的现代化建设贡献自己的力量。这些人的光辉形象和他们可歌可泣的动人事迹,永远激励着每一个中国人奋发向上!
老师们、同学们:大家早上好! 阳春三月,是春光明媚、万木吐绿的美好季节,也是同学们长知识、长身体的最佳时节。我们一定要珍惜每一分钟,办好每一件事,走好人生每一步,做到学有成绩,学有收获。我今天在国旗下讲话的题目就是《养成好习惯,走好每一步》。什么叫习惯?习惯就是经过不断的重复或练习而巩固下来的行为方式。习惯在人的成长中至关重要,她不知不觉地影响着我们每一个人的品德,反映着每一个人的本性,决定着每一个人的成败。爱因斯坦有句名言:“一个人取得的成绩往往取决于性格上的伟大。”而构成我们性格的,正是我们日常生活中的一个个习惯。当然,习惯有好坏之分,好习惯养成得越多,个人的能力就越强,他与成功也就越接近。因此,同学们要克服坏习惯、养成好习惯。如何养成好的习惯呢?我罗列了一下,主要抓好“学习习惯、生活习惯、文明礼仪习惯、劳动习惯”等4种习惯的培养,其中重点要抓学习习惯的培养。在工作中,老师们已经采取有效的措施来帮助你们培养良好的学习习惯,但是光靠老师的帮助与教导还远远不够,更重要的是需要你们自己的行动和努力。为此,学校要求:课前准备方面,要对照课程表做好预习,备齐、带齐学习用品,不丢三落四;课堂学习方面,不管哪个学科都要做到“五会”
二、说教法 教学方法是教师授课的手段,说教法就应该说“怎么教”以及“为什么这样教”的理论依据,应突出以下几点: 1.说出本节课所要采用的最基本或最主要的教法及其依据。 2.说出所采用的教学方法与学应用的学法之间的联系。 3.说出如何突出重点、分散难点。 例如(片断) 课题:能被3整除的数(人教版九年义务教育六年制小学数学第十册) 说教法:教学力求体现自觉性原则、运用培养自学及目标教学的基本模式,采用自学讲练结合的方法进行。自主性教学原则有利于学生思维能力的培养,可以充 分发挥学生的主观能动性,变被动听为主 自学,学生积极动脑、动口、动手。运用目标教学的基本模式、倡导教师为主导,学生为主体,思维训练和语言表达为主线。 强化学生合作学习、自学思考,充分发挥 学生的天赋和创造才能,保证课堂训练的 密度。本节课使用多媒体教学手段,力求 借助这些手段节约时间,突破难点,提高 效率。
1、太阳每天都是新的向着成功努力的过程,乍一看,就像一条黑漆的隧道,望不到头,比如高三毕业班的学生,每天有做不完的作业,忙不完的事,睡不够的觉,许多人每天都要“头悬梁锥刺骨,地挑灯夜战”,每天在“两点一线”之间劳碌……一天天的生活就像复印机里印出来的,一切都在重复。别忘了,太阳是新的!全新的,是一种最美的心境!新的太阳,难道这不是一种希望吗?每天都看见希望,就像是在黑口的夜里看见曙光,难道这不是一种幸福吗?是的,沉重的负担压得我们几乎崩溃了,太高的期望将我们紧紧地钉在地上,但也许最沉重的负担同时也是一种生活充实的象征。尼采说,受苦的人没有悲观的权力,所以我们不一定要向着胜利微笑,但面对暂时的困难,我们必须微笑,而且是会心动微笑。埋首于通向成功征途,是必须真真正正“埋”下去的,这段日子需要休沉下来,静下心来,只有保持“心静如水”的状态,才能投入最后的冲刺。我们好比是在乘一辆车前往目的地,沿途的风光很美,很诱人,但是你最好不要为了他们牵扯太多的精力,而要使目光一直朝着终点的方向看,如果忍不住跳下车去欣赏暂时的美景,这辆车就开走了,也许你会看到另一辆车,也许最后你同样到达目的地,但那也不是你人生准点的时刻了。
教学目的:理解并熟练掌握正态分布的密度函数、分布函数、数字特征及线性性质。教学重点:正态分布的密度函数和分布函数。教学难点:正态分布密度曲线的特征及正态分布的线性性质。教学学时:2学时教学过程:第四章 正态分布§4.1 正态分布的概率密度与分布函数在讨论正态分布之前,我们先计算积分。首先计算。因为(利用极坐标计算)所以。记,则利用定积分的换元法有因为,所以它可以作为某个连续随机变量的概率密度函数。定义 如果连续随机变量的概率密度为则称随机变量服从正态分布,记作,其中是正态分布的参数。正态分布也称为高斯(Gauss)分布。
教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。