教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
一、乘势而上、顺势而为,把握发展机遇XX会要求,X要在X融合发展上下功夫、要在提质上下功夫。XX区作为中心城区,必须要有更大担当、更大作为。前三季度,我区经济运行各项指标总体向好,在XX个市辖区排名中,我区生产总值完成XX亿元,增长XX%,排第XX位;服务业增加值完成XX亿元,增长XX%,排第XX位;进出口完成XX亿美元,排第XX位;利用省外资金完成XX亿元,排第XX位;房地产开发投资XX亿元,增长XX%,排第XX位;工业增加值完成XX亿元,增长XX%。这些数据表明,我区的服务业发展持续向好、对外贸易企稳回升,房地产投资平稳上升,主要指标逐月逐季回升,基本符合年初预期,有些指标甚至好于预期,特别是一直困扰XX区的“二产偏慢、创新不足”的问题正在得到弥补,后劲不断增强。
一、2022年工作完成情况 2022年,征管中心根据县政府工作部署,结合开发区经济发展、重点基础设施工程和城区建设发展需要,通过全面摸排和轮会商,并征求各相关单位意见,确定了大类共个征迁项目的年征迁工作计划,并提了县政府常务会研究通过后付诸施。计划涉及个城区征收项目、个经济发展征收项目、个重点工程征收项目,涉及环峰等个镇。计划征收土地约亩,征收集体和国有土地上房屋约户,征收总成本约亿元。 一狠抓进度助力含城经济高速发展。一是根据年初制定的征迁工作计划,迅速与施主体密切配合,拟定等房屋收储及征收补偿安置施方案,并报县政府同意后施。二是做好保障征地组卷报批工作,按规定组织完善料,强化前期审核把关,保证顺利报审,目前已顺利报批土地征收项目个。三是严格协议审查等业务性工作。认真细致地做好协议审查、房票发放、征地补偿资金申报及相关归档工作,做到补偿资金准确无误。目前已经审核经开区及镇征地协议份。同时根据路改造专题协调会会议要求,全力做好改造过程中涉及到的相关设施迁移审核工作。四是做好征迁项目督查指导和调度工作。征管中心组成三个指导小组不定期赴项目组进行现场指导,对征收过程中遇到的际问题和困难进行专业性建议,并组织相关人员针对问题的重难点进行培训,确保征收工作顺利进行。五是在全力抓好县内各项重点工程土地、房屋征迁服务工作的同时,也积极做好征迁安置房管理各项工作。目前已经顺利完成司等征迁项目征迁档案余份的整理工作。中心始终坚持“及时、准确”的工作态度做好安置房管理结算工作。目前已完成户房票补助、户安置房结算工作,完成协议报账户,并对所有结算、报账工作一户一审查,确保准确无误、及时零误差。六是做好资金保障工作。截止目前已完成征地补偿等笔专项资金申报及支付工作,总资金约万元,完成房票补助资金支出元。同时配合完成路征迁临时点建设工作和专项经支付,有效地保障征迁项目顺利进行。
一、进展情况和主要做法紧紧围绕巩固拓展脱贫攻坚成果,接续推进乡村振兴任务,扎实有效的开展乡村振兴工作。(一)分类帮扶,确保脱贫群众稳定增收。1、全力抓好产业帮扶工作。完成两批产业到户项目申报,其中,自营发展类482户,另有6户同时申报吸纳就业与自营发展类,产业到户补助资金共计XX万元,资金均已打卡发放到位。2、全力推进就业帮扶工作。我镇拥有省级开发区(XX经开区),随着开发区发展壮大及镇域经济提升,农村就业人口有回流趋势,2022年我镇外出务工5515人,本地务工1025人,其中,脱贫人口务工1100人,为去年的105%。为促进脱贫人口和监测对象稳岗就业,我镇共开发公益性岗位110个,申报补助资金XX万元(300元/人/月),省外就业脱贫劳动者交通补贴申报25人X万元。另外,我镇积极开展外出务工月监测工作,积极组织各村开展返岗复工劳动力情况调查工作,确保务工监测数据录入及务工数据核查比。3、全力实施金融帮扶工作。首先对户贷户用及“一自三合”的宣湖蛋鸡厂和安徽木子农牧发展有限公司加强小额信贷风险监测,警惕还款风险,截至当前未有风险。另外加大力度宣传小额信贷,确保贷款资金安全的情况下应贷尽贷,巩固帮扶小额信贷工作成果,全年发放小额信贷129户XXX万元。
发展后劲不断增强。持续完善园区基础设施建设,速提质升级,完成镇化创意产业园扩容400亩土地征迁;投资800万元,实施园区工业一路及配套管网项目建设,园区污水处理厂项目正在进行专家评审。做大移民创业园,新建1栋5500平米的标准化厂房,第二栋3100平米的标准化厂房正在建设。协助做好110V输变电工程。积极推动“天长市镇化创意产业园项目”申报政府政策性开发性金融工具“基金”备选项目资金和专项债。 乡村振兴持续发力。坚持规划引领,实施镇控制性详细规划的编制,持续跟进4个村的村庄规划编制工作,完成宁淮高铁拆迁安置区选址及设计。完善基础设施,完成郑关路黑色化提升改造工程。做好浮山矿开采前期工作,征地40亩,建成西外环道路。投资70万元,实施“一事一议”民生项目3个。投资60万元,完成李老路提升改造。城乡供水一体化项目二三级管网延伸工程正在建设。改善土地条件,投资2250万元,完成老山村高标准农田建设,并通过上级验收;投资5000万元,启动川桥村、施庄村1.8万亩高标准农田建设;完成向阳社区、长安村2023年高标准农田建设项目入库。强化土地资源利用,实施500亩土地增减挂钩项目。全力开展抗旱行动,实施水库补水工程,累计补水3900万方。增强化发展动力,投资2000万元打造国家风景道周边特色化景点,镇历史化展览馆完成建设,678乡愁忆馆正在建设。 生态环境明显改善。坚决打好蓝天碧水净土保卫战,深入推进秸秆禁烧,常态化落实“河长制”“林长制”“路长制”“田长制”。实施自然村庄整治提升项目,投资400万元,推进川桥村、施庄村等自然村庄宜居建设。投资500万元,实施农村垃圾分类资源化处理中心项目。投资150万元,完成第三轮农村环卫保洁招标工作。投资60万元,完成新一轮镇村绿化养护招标。投资150万元,全面推进农村黑臭水体禹王河治理。实施对原银狐漆业地块实施详细调查及风险评估项目。 民生福祉持续增进。投资280万元,实施镇敬老院提升改造工程,完成向阳社区、长安村、施庄村养老服务中心建设。完善社会救助体系,投资20万元实施监测户基础设施提升改造工程。完善全国村级议事协商创新实验试点单位向阳社区建设,村级议事协商成果丰富。重点推进防溺水管理,组建镇村巡逻队每天开展3次防溺水巡查。推进农村自建房安全整治,排查房屋1800栋。大力开展暖民心工程宣传,制作海报30张、条幅73条,发放宣传页8000张,发送暖民心短1.5万条。推进镇村医保“一刻钟服务圈”建设。 农村改革纵深推进。深化农村宅基地制度改革服务大厅服务,稳步推进农村宅基地制度改革试点工作,以盘活农村闲置资源为出发点,积极探索金融惠农新模式。结合农村人居环境整治,规范农村建设,打造一批美丽庭院示范户。探索农村宅基地制度改革助力村集体经济发展,塘村集体经济合作社以农村宅基地制度改革为契机,成立天长市迎峰建设有限司,今年全镇预计实现集体收入367万元,较上年增长37,其中5个村集体收入达50万元。推动家庭农场和专业合作社发展,新申报市示范家庭农场1个、天长市示范家庭农场3个、天长市示范合作社1个,新增家庭农场6个。
(四)存在主要问题。一是缺乏专业技术人才,技术型的干部数量偏少,缺少熟悉生物多样性、林业保护、地质方面的专业人才。二是现有人员缺乏对保护区、风景名胜区专业规划的深刻理解,在使用智慧化手段开展生态保护和开展生物多样性监测等技术含量较高等工作时,一些干部难以有效胜任。三是外来物种防治难度大。松材线虫病呈点面状扩散至多个山头,疫木除治难度系数大;保护区生物多样性丰富,不宜开展大面积药物喷洒防治;部分游客缺乏防控意识,外来入侵物种被带入山。四是2021年至今XX没有按照合同约定支付人工林赎买流转款项,管委会将面临相关经营者及村集体上访、诉讼的风险。二、2024年工作安排1.全力推进XX国家公园创建。一是积极主动对接省林业局,加快推进XX国家公园创建的步伐。二是为对标国家公园管理机制,做好XX管理机构与未来国家公园管理机构的有机衔接打好基础。
(二)全面系统优规划强园区一是加强赴外招商推介、挖掘龙头机构在深投资意向。二是持续引领数字人民币在预付费监管、智慧养老消费、智慧园区等领域先行示范,加快应用场景创新,吸引数字人民币上下游产业链企业汇集XX,促进产业培育发展,推动数字人民币从“应用试点”转向“应用生态”;三是依托保险机构集聚优势,创新商业保险供给方式,鼓励IDI、幕墙险、跨境医疗险等创新试点,围绕保险参与基层治理、保障社会民生、推进深港融合等领域激发创新活力。四是联合上海黄金交易所探索打造集中高效的场外黄金流转库,规范场外黄金交易链条。谋划构建黄金金融融资交易流转系统,打造金融精准支持实体产业的深圳先行示范样板。(三)全心全意提质量促服务一是继续开展“融·易·XX”企业融资对接和政策宣讲活动,延展金融服务触角,针对市区最新政策、创新做法、金融产品进行深度解读,为辖区企业及时输送政策给养,提供优质政策支撑,保障辖区中小微企业稳健发展;二是继续跟进重点企业融资纾困项目,协调授信银行不抽贷、不断贷,支持企业平稳化解流动性压力;三是继续做好重点企业服务。
五、认真开展道路交通安全专项整治2023年在管委会道路交通安全领导小组的布置下,由道路交通安全管理站牵头,联合派出所、交警队、交通执法、行政执法分局等单位,对村级道路每月进行不少于一次督查,发现问题及时整改。针对农聚路大型车辆较多,群众投诉不断,开展4次治超专项行动,办结交通行政处罚案件23件,罚没款2.9万元,卸载货物100余吨。通过联合整治行动。控制住超限超载行驶势头,消除道路交通安全隐患。虽然我区今年在抓好道路交通安全综合治理整治工作做了大量工作,但是离上级要求还存在一定差距,还存在有不足之处,尤其是农村山区还存在部分砂石路面未硬化,影响群众出行,还存在少部分电动车未登记牌照,无证照驾驶摩托车等行为,还须要加大工作量。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。