
活动目标:1.探索橘子的大小与瓣数的多少是否有必然的联系;2.能清楚地表达探索的过程与结果;3.学习不受物体排列方式的影响计数,探索多种计数的方法;4.尝试用数学的方法解决问题。 活动准备:1.剥开的橘子人手一个、没剥开的橘子人手两个;2.笔、记录纸、卡片等。 活动过程:1.创设问题情境,引发幼儿思考与操作。(1)幼儿想办法点数橘子的瓣数并进行记录。师:我们班的小朋友都喜欢和大家分享东西,今天我们来分享橘子,分享之前老师要考验小朋友,如果你们挑战成功就可以分享橘子。挑战的问题是:如果你和大家分享一个橘子,每个人吃一瓣,可以有几个人吃到你的橘子,想一想可以用什么办法知道。幼:数一数。师:橘子是圆的又可以掰开,那可以怎样数呢?小朋友动脑筋想一想,可以跟旁边的小朋友商量,想好了拿一个橘子用你的办法试一试。数完了不仅要把数字记在心里,还要记在记录表上。

三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具 高考试题中近一半的试题与这三个“二次”问题有关 本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。课程目标1. 通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。2. 使学生能够运用二次函数及其图像,性质解决实际问题. 3. 渗透数形结合思想,进一步培养学生综合解题能力。数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。

【活动重点】 理解顺数与倒数的内在规律。 【活动难点】 学习倒数、倒接数 【活动准备】 1、1—10磁性数字卡2套、方向箭头1个 2、青蛙10个,荷叶若干个 3、相同火车头图片2个(区别:车牌号不同) 4、高楼模型1栋、1—10粘贴数字1套 5、《开火车》音乐 【活动过程】一、开始部分: (一)教师自我介绍,表达认识新朋友的愉悦心情。 (二)教师以谈话的方式,导入青蛙,及要去参观青蛙的新楼房的主题,吸引幼儿的注意力和参与活动的积极性。 (三)教师与幼儿共同游戏进行知识铺垫。 1.通过拍手游戏感知数量之间多1与少1的关系。 2.数字感知多1与少1的关系:如:比2多1的数是几?比9少1的数是几?

今天,我说课的题目是《母鸡》,下面我将从说教材、教法和学法、教学过程、板书设计等几个方面来对本课题进行说课。一、说教材《母鸡》这篇课文是部编版四年级下册的课文,本文记述了一只母鸡关心爱护它的小鸡的事例,抒发了对纯洁无私的母爱的赞美之情根据新课程标准和本文的具体教学内容,结合四年级学生的实际情况,我确定了本课时的教学目标:知识技能目标:1.认识本课12个生字,会写“讨厌”等15个生字。2.正确、流利、有感情地朗读课文。3.了解母鸡的特点,体会作者用词的严谨和伟大的母爱在母鸡身上的具体体现。4.学习课文抓住特点,具体生动描写动物的写法。情感目标:感受伟大的母爱。教学重点:了解母鸡的生活习性及伟大的母爱在母鸡身上的具体体现。教学难点:学习课文,抓住特点,具体生动描写动物的写法

尊敬的各位老师,亲爱的同学们:大家早上好。我今天和大家分享的话题是《让你我都是三月的春风》。三月的一切都是美好的,嫩黄的叶芽,婀娜的枝条,在空中飘舞的曼妙的身姿,这是濯缨池畔的柳树;满树的花苞,怒放的花朵,沁人心脾的娇美的花影,是真三楼前的桃树和杏树;美好的三月,既是一切花草树木萌发绽放的季节,更属于我们瑞中学子快乐生长,蓬勃发展的时期。花草万物的萌动绽放,是因为有春风春雨的鼓动,爱抚和滋润;少年学子的快乐成长、蓬勃发展,同样需要师长和他人的鼓动,爱抚和滋润。作为青年的我们,不仅仅需要他人的鼓动、关爱和帮助,我们也可以做他人的春风春雨。XX校长在本学期第二周的升旗仪式上作了《建设美好而松弛的教育关系》的讲话。今天,我就如何确立自己和外界的关系和大家作以交流探讨。

尊敬的老师,亲爱的同学们:大家好!马上就要到春分过后的第十五日,那是中国传统节日清明节。在这段日子里,万物生长,都是一副清洁明净的模样。它给人的印象却总是雨纷纷的,就像我们身边下着的小雨,这就是一年中最标致的清明轮廓。关于清明节,有这样一个传说。春秋时期晋公子重耳流亡时,曾累倒不起,群臣竟找不到一点东西吃。而介子推默默割下自己的大腿肉助重耳恢复了精神。多年后重耳当了国君,要赏赐当年的功臣,却唯独忘记了介子推。而这时的介子推同母亲隐匿在山林里,难以寻觅。在他人的建议下重耳烧起了山林,以为他会自己出来,不料想最后在柳树下发现了死去的介子推和他的母亲,以及介子推留下的劝君清明的谏言。次年晋文公领着群臣,登山祭奠介子推,那棵柳树又生长起来,重耳叫它清明柳,又把这天定为清明节,清明节日及感恩之情流传至今。

问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学

二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.

1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

二、工作重点 1、教学常规常抓不懈,培养学生良好的学习习惯。 2、健全以课堂教学研究为核心的教研,立足校情开展教研活动。 3、开展丰富的语文活动,促进学生学习用心性与语文潜力的提高。

一、说教材:《操场上》有一幅表现操场上热闹的图,6个表示体育运动的词语和一首儿歌。图上画了小学生在操场上所玩的大部分体育活动,儿歌概括了操场上活动的情形。通过这节课的学习,可以激发学生参加体育锻炼的兴趣。我上的是第一课时,在这节课上,我安排的学习任务是认读课文中的12个生字,学会写7两个字。二、说学生:一年级学生年龄较小,大多数学生活泼好动,大胆且独立,对事物具有积极乐观的态度,有意注意的时间较短,好动、好玩是他们的天性。所以我就要想尽办法,变着法儿的把他们引到课堂中来,引导他们主动一些的参与到我们的学习中。

(二)、学习字词1、看图说话,认识体育活动的名称。师:看,操场上多热闹啊!这些小朋友都在干什么呢?(生:有的在跑步、有的在打球.......)师:你们说的真棒!老师告诉你们一个秘密,刚才你们说的体育活动中就藏着我们今天要学习的词语宝宝,咱们一起把他们读出来怎样?(师点击课件出示词语)2、这些词语你们认识吗?(如有认识的就请他读一读)不认识怎么办呢?利用拼音自已读一读,指名读、集体读。3、教师:去掉拼音小朋友们还认得这些字吗?我们来比一比看哪一组的小朋友反应最快了。利用课件,检查学生认读情况。4、组织学生看老师手里的卡片不出声做动作。5、小朋友看刚才我们学的词语中有的是用手做的动作,有的是用脚做的动作,那么请几个小朋友互相合作找一找哪些是用手做的动作,哪些是用脚做的动作?师生一起总结学习:“扌、足”。将字分类写在黑板上。

一、说教材小青蛙是小学一年级语文下册第一单元识字课中的第三课,这是一首儿歌形式的字族文识字课,读起来朗朗上口,音韵和谐,讲述了小青蛙的外形和本领,号召大家要保护小青蛙。本课共有12个生字,其中母体字“青”和不同的形旁搭配,构成五个新字,形成了以“青”为基础的一组音近、形近的形声字,而这些字的意思在这首儿歌的情景中有具体体现,于是这些字的音形义在语境中便巧妙的联系起来,很有特点。二、说学情低年级孩子由于受年龄特点和认知发展特点的限制,爱玩好动,思维活跃,表现欲强,但持久性差。只有尊重孩子的天性,才能收到理想的学习效果,那么让课堂充满乐趣,不仅是低年级孩子的心理需求,也是语文教学、识字教学本身内在的要求。另外,虽然孩子们已经有半年的语文学习经验,但识字能力尚在形成过程中,教师仍需指导识字方法,让学生跟着老师一起感悟。

一、说教材《小青蛙》是一篇孩子们喜欢的儿歌。本组教材充分体现了工具性和人文性的统一。本文要求掌握的生字7 个,要求会认的字12个。由于面对的是低年级学生。我尽量把识字和阅读结合起来,以识字为主,阅读为辅,以多种游戏的形式,使枯燥的识字教学”活“起来。二、说教法学法教法:新课标倡导学生是学习和发展的主体,语文教学要关注学生的个体差异和不同的学习需求,爱护学生的好奇心、求知欲,充分激发学生的主动意识和进取精神。因此,将教学方法确定为促进学生自主、合作、探究性学习的“情境教学法”和“自主识字法。”教学中要充分利用多媒体直观教学手段,创设情境,开展活动,有张有弛,引导学生积极主动地投入到学习活动中去。

活动目标:1.探索泡沫垫的多种玩法。 2.结合数字规律练习单脚跳、双脚跳及跨跳等多种跳的能力及动作的协调能力。 3.努力听清教师指令,遵守游戏规则。活动准备:人手一块泡沫垫,1~10的数字卡片2套。活动过程:一.开始部分。今天天气真不错,我们一起来玩玩吧!(幼儿随铃鼓的变化变大圆----小圆----蜗牛圆) 二.基本部分。1. 出示泡沫垫,你们知道这是什么吗?它有什么用?泡沫垫除了可以作为垫子,还可以和我们玩游戏呢?我们一起来试试。现在小朋友们分成2组游戏,可以自己玩,也可以和同组的小伙伴一起玩。(幼儿四散游戏)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。