一、说教材:6的乘法口诀是人教版九年制义务教育小学数学第三册第三单元第六课时的内容。是在学生已经初步理解了乘法的意义,学会了1——5的乘法口诀的基础上进行教学的。教材在编排上先出现一组准备题,每次加6,把得数填在空格里;再出现例10,看图写出乘法算式,并编写出乘法口诀;然后进行巩固练习、并运用所学知识解决实际问题。乘法口诀的教学是本单元教学的一个重点,也是本学期教学的一个重点,它是学生以后进一步学习乘除法的基础。根据教学内容、学生实际和新课程标准的要求,我从知识与技能,过程与方法,情感态度与价值观等几方面制定了本课的教学目标:教学目标:1、知识目标:学生通过操作软件,在学习乘法口诀的过程中进一步理解意义,让学生在实际问题情景中感受乘法口诀的形成过程,并能用口诀熟练地进行计算。
1.说课内容本课时的内容是九年义务教育人教版小学数学二年级上册第四单元表内乘法(一)的内容。2.教材地位及作用“5的乘法口诀”这部分内容是在学生已经掌握乘法意义的基础上进行教学的,是学习编写口诀的开端,其地位尤为重要;由于学生有五个五个数数的基础和经验,很容易得出2个5,3个5,4个5,5个5的和。再联系乘法的意义,从加法算式到乘法算式,最后编写乘法口诀;使学生在理解的基础上掌握5的乘法口诀。二、说教学目标:知识目标:知道5的乘法口诀的来源,理解每句口诀的含义,并能熟记5的乘法口诀。能力目标:学生能够灵活运用5的乘法口诀解决简单的实际问题,初步培养学生观察、分析、归纳的能力。情感目标:让学生体会数学与生活的密切联系,激发学生热爱数学的情感。
二、说教学目标知识和技能:能结合生活情景辨认锐角和钝角,能口述锐角和钝角的特征。 过程和方法:通过观察、操作、分类、比较等数学教学活动,培养学生的动手能力,合作意识,激发学生的创新思维。在对简单物体和图形的形状的探索过程中,发展空间观念。情感、态度、价值观:通过实践,使学生获得成功的体验,建立自信心。通过生活情境的创设,感受生活中处处有数学,培养学习数学的兴趣。教学重点:能辨认锐角、钝角。知道锐角、钝角的特征。教学难点:能辨认锐角、钝角。三、说教法、学法这一节课的教学对象是二年级的学生。他们年龄小、好动、爱玩、好奇心强,在四十分钟的教学中容易疲劳,注意力容易分散。根据这一特点,为了抓住他们的兴趣,激发他们的好奇心,我采用了愉快式教学方法为主,创设情境,设计了生动有趣的简笔画,让学生在图所创设的情境中学习。同时我还采用了动像发现教学法,让孩子们通过合作交流去发现角和展示角,这样既活跃了学生的思想,激发了认知兴趣,而且充分发挥学生的学习积极性。
最富趣味的是荷兰艺术家埃舍尔,他到西班牙旅行参观时,对一种名为阿罕拉的建筑物有很深的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺了种类繁多、美仑美奂的马赛克图案。Escher用数日的时间复制了这些图案,并得到了启发,创造了各种并不局限于几何图案的密铺图案,这些图案包括人、青蛙、鱼、鸟、蜥蜴,甚至是他凭空想象的物体。他创作的艺术作品,结合数学与艺术,给人留下深刻的印象,更让人对数学产生了另一种看法。欣赏埃舍尔的艺术世界:2、动手创作。(小小设计师)看了大艺术家的作品,你现在是不是也有了创作的冲动?下面,请你选一种或几种完全一样的图形进行密铺,可以自己设计颜色,比一比,谁的设计更美观、更新颖。(交流,展示)四、总结:谈收获体会我们今天只是研究了一些规则图形的简单的密铺。生活中还有各种各样的密铺现象。同学们可以到生活中去观察,也可以上网浏览。
密铺的历史背景1619年——数学家奇柏(J.Kepler)第一个利用正多边形铺嵌平面。1891年——苏联物理学家弗德洛夫(E.S.Fedorov)发现了十七种不同的铺砌平面的对称图案。 1924年——数学家波利亚(Polya)和尼格利(Nigeli)重新发现这个事实。最富趣味的是荷兰艺术家埃舍尔(M.C. Escher)与密铺。M.C. Escher于1898年生于荷兰。他到西班牙旅行参观时,对一种名为阿罕伯拉宫(Alhambra)的建筑有很深刻的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺上了种类繁多、美轮美奂的马赛克图案。Escher 用数日复制了这些图案,并得到启发,创造了各种并不局限于几何图形的密铺图案,这些图案包括鱼、青蛙、狗、人、蜥蜴,甚至是他凭空想像的物体。他创造的艺术作品,结合了数学与艺术,给人留下深刻印象,更让人对数学产生另一种看法。
1、创设情境,激趣导入。通过有趣的机器人引出学生对几何体的初步感知。使学生的注意力马上集中起来,学习的兴趣被激发,学生强烈渴望进入下面的学习。2、我接着请同学们动手分一分,使学生初步认识长方体、正方体、圆柱、球,知道它们的名称。并用已有的生活经验给几何体命名,再一次调动了大部分学生的学习兴致。3、游戏“我说你摸”“搭一撘”的目的,是为了让学生由实物抽象出形状图形,培养学生抽象能力,在由形状说出生活中是这种形状的实物的练习活动。游戏,不仅可以激发学生的学习兴趣,也可进一步培养学生的空间观念。并能感受复杂物体的形状与简单几何体之间的联系。4、内容小结,巩固新知通过这节课的学习,和学生一起回顾这节课我们认识了哪些物体。既是学生对这节课知识的自我整理,同时又考查学生对知识的掌握程度。也是对学生言语表达能力的培养。
(二)师生互动,认识长方形、正方形、三角形和圆。1、学生拿出准备好的学具(长方形、正方形、等)亲自动手实践,摸一摸、看一看,并在纸上描画这些物体的面,比一比哪个小组的同学画得最好。2、分组讨论,教师巡视3、全班交流,展示作品,根据学生的交流,师生共同得出结论,长方体画出的是长方形,正方体画出的是正方形,三角锥画出的是三角形,圆柱画出的是圆。4、联系生活说一说,清学生说一说生活中见到哪些物体的面是长方形、正方形、三角形和圆。(三)巩固练习用准备好的学具(若干个)拼出自己喜欢的图案,看哪个小组在规定的时间内拼得图案最多最美。1、小组活动。2、各个小组展示自己的作品。3、小组评价,选出优胜品。师选出几个有代表性的作品,让学生分析它是由什么图形组成。
一年级学生是7-8岁的儿童,思维活跃,课堂上喜欢表现自己,在学习中随意性非常明显,渴望得到教师或同学的赞许。“比大小”这一内容的教学是在学生已经初步会认、读、写5以内各数的基础上教学的。充分利用学生的生活经验,引导学生用1-5各数来表示物体的个数,还要引导学生通过观察、比较、操作等实践活动,增加感性认识,初步接触集合、对应、统计等数学思想。相信本节课内容的教学,学生掌握并不会感到十分的困难。 说教学策略:结合本班的学情,为了突出学生的主体地位,在教学中让学生积极动手、动眼、动脑、动口,引导学生通过自己的学习,体验知识的形成过程,积极开展本节课的教学活动。为更好地突出重点,突破难点,我准备采用以下教学方法。一、创设情境,调动学生的生活经验,引起学习兴趣。使学生好学。二、动手实践,探索新知。调动学生学习的积极性,使学生会学,在学习过程中有意培养学生主动探索的能力。
说教学内容:可能性的大小(人教版三年级上册P106~108例3、例4、例5)说教学目标:1、知识技能目标:使学生进一步体验不确定事件,知道事件发生的可能性是有大小的。2、过程方法目标:经历事件发生的可能性大小的探索过程,初步感受随机现象的统计规律性;在活动交流中培养合作学习的意识和能力。3、情感态度价值观目标:感受数学就在自己身边,体会数学学习与现实的联系;进一步培养学生求实态度和科学精神。说教学重难点教学重点:学生通过试验操作、分析推理知道事件发生的可能性有大有小。教学难点:利用事件发生的可能性的知识解决实际问题。说教学过程:一、感受可能性的大小。1.出示问题:(1)谈话引入:通过前面的学习,我们已经知道了在生活中,有的事情可能发生,有的事情是不可能发生的,今天我们进一步研究可能性的问题。
在课改进行得如火如荼的今天,新课程如一股春风吹进了我们的校园,走进了每一位师生的生活。我校从去年秋季开始选用了人教版的《义务教育课程标准实验教科书》,一年多来,我们不断更新教学理念,刻苦学习、大胆创新,探索了一些适合本地教学实际的有益途径,本节课是义务教育课程标准实验教科书一年级上册的内容,在学生已经学习了8和9 的加减法后进行教学的。学好本节课将为今后学习文字应用题打下坚实的基础。在教学过程中我将教材做了一些小小的改动,根据优化课堂教学的需要对教材进行了再加工,旨在因地制宜,使学生进一步掌握加减法的意义和10以内加减法的计算方法。提高学生运用所学知识解决实际问题的能力。让学生在学习中受到热爱自然、保护环境的教育,同时在教学中培养他们的合作意识和创新精神。
2、学生分析 其实学生对身体并不陌生,可以看得到、摸得着,但有时越是熟悉的事物学生越不容易产生关注,学生并不会花很多的时间去探究身体更多的奥秘,这恰是我们教学有价值的地方。我们可以在“熟悉”两个字上做文章,在课堂中利用学生已有的知识,建构本课新的知识体系。我期望通过本课教学后,学生不再对自己的身体熟视无睹,而会运用各种观察方法进行细致入微地观察,还能在这种强烈的兴趣地鼓舞下通过查资料等各种方式深入地研究自己的身体。
三、说教学理念:通过观察、猜测及动手操作实验等方法,向学生渗透有序的数学思想。四、说教学过程:一、创设情境、激趣导入。小朋友们喜欢什么样的球类运动呢?让学生各抒已见。当有人说到足球时。老师马上引到学校冬季运动会,我们三年级3个班的比赛情况,结果我们班得了第一。那我们班比赛了几场?学生回答两场。三个班比赛,每两个班比赛一场,那一共要比赛多少场呢?四人小组合作完成。然后汇报,并说理由。二.动手实践,自主探究1.2002年世界杯足球C组比赛有几国家?是哪几个国家?让学生发表意见。他们说不出,老师再告诉他们。2.如果这四个队每两个队踢一场球,一共要踢多少场?(课件演示主题图)3.让学生大胆说一说、猜一猜。4.四人小组用学具卡片摆一摆、讨论讨论。
一、 说教材1、教材内容:人教版小学数学第十册《解简易方程》及练习二十六1~5题。2、教材简析:本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。3、教学目标:(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
我找了几名音准较好的学生来学习低声部的旋律,然后再把两声部合起来,音准较好的学生和我来扮演小树演唱低声部,大部分学生扮演蓝天演唱高声部。注意结束句的气息控制,指导学生用循环呼吸。这样,从先唱谱再唱词;先唱高声部,再两声部合唱。由简到难,逐步地演唱歌曲。降低了学生学习二声部歌曲的难度,也提高了课堂的时效性。4 表现歌曲引导学生边打拍子边分角色有感情的演唱歌曲,感受三拍子的音乐特点,进而唱出歌曲三拍子的流畅性和歌曲的情绪。使学生对歌曲更加熟悉。 (还可以加动作表演歌曲 )5 拓展延伸引发学生思考:我要怎样长大?从而激发学生在成长的路上要努力学习/不怕困难等。6课堂小结最后的小结,我让学生在音乐声中把自己的愿望都写在了卡片上,激励他们去为了自己的理想好好学习,努力奋斗,使歌曲的情感得到了升华。
一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.