1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).解析:(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.解:(1)因式分解的方法是提公因式法,共应用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需应用上述方法2016次,结果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法总结:解决此类问题需要认真阅读,理解题意,根据已知得出分解因式的规律是解题关键.三、板书设计1.提公因式分解因式的一般步骤:(1)观察;(2)适当变形;(3)确定公因式;(4)提取公因式.2.提公因式法因式分解的应用本课时是在上一课时的基础上进行的拓展延伸,在教学时要给学生足够主动权和思考空间,突出学生在课堂上的主体地位,引导和鼓励学生自主探究,在培养学生创新能力的同时提高学生的逻辑思维能力.
解析:由分式有意义的条件得3x-1≠0,解得x≠13.则分式无意义的条件是x=13,故选C.方法总结:分式无意义的条件是分母等于0.【类型三】 分式值为0的条件若使分式x2-1x+1的值为零,则x的值为()A.-1 B.1或-1C.1 D.1和-1解析:由题意得x2-1=0且x+1≠0,解得x=1,故选C.方法总结:分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、板书设计1.分式的概念:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有无意义的条件:当B≠0时,分式有意义;当B=0时,分式无意义.3.分式AB值为0的条件:当A=0,B≠0时,分式的值为0.本节采取的教学方法是引导学生独立思考、小组合作,完成对分式概念及意义的自主探索.提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程中获得了解决新知识的途径.在这一环节提问应注意循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成.
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
解:(1)设第一次落地时,抛物线的表达式为y=a(x-6)2+4,由已知:当x=0时,y=1,即1=36a+4,所以a=-112.所以函数表达式为y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,则-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守门员约13米;(3)如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件.常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答.
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
一、情境导入1.计算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根据多项式乘以单项式的运算归纳出多项式除以单项式的运算法则吗?二、合作探究探究点:多项式除以单项式【类型一】 直接利用多项式除以单项式进行计算计算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根据多项式除以单项式,先用多项式的每一项分别除以这个单项式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法总结:多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.
方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正()A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】 多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是()A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.
探究点二:列分式方程某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得20x+10x+4=15.故选A.方法总结:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.三、板书设计1.分式方程的概念2.列分式方程本课时的教学以学生自主探究为主,通过参与学习的过程,让学生感受知识的形成与应用的价值,增强学习的自觉性,体验类比学习思想的重要性,然后结合生活实际,发现数学知识在生活中的广泛应用,感受数学之美.
一.教学内容。我今天说课的内容是新人教版教材小学数学六年级上册第一单《分数乘法》例5《小数乘分数》。这部分是教材新增加的内容,用一课时进行教学。二.说教材。1.教材分析本部分的教学是在学生掌握了整数乘法、小数乘法、分数乘法、以及整数和小数混合运算、简便计算的基础之上进行的教学。教学中不仅涉及到分数与小数的互化,假分数与带分数的互化,整数与分数的互化,而且对如何判断一个分数是否能化成有限小数等知识都会涉及。通过教学本例题要使学生经历探究计算方法的过程,运用多样化的解题思路开拓学生的计算思维,提高学生的计算能力。为教学例6、例7的分数混合计算和简便计算奠定基础。
一、教材分析义务教育课程标准实验教科书数学(人教版)一年级上册中实践活动——“数学乐园”是根据学生的年龄特点,联系学生的生活实际设计的一种数学实践活动情境,其内容都是一些具有现实性和趣味性的活动材料和“起立游戏”、“送信游戏”等。学生在活动中可以进一步经历数学知识的应用过程,感受自己身边的数学知识,体会学数学、用数学的乐趣。基于以上分析,确定了以下教学目标: 1.进一步掌握20以内数的顺序、组成及计算,区分它们的基数、序数含义。 2.了解同一问题可以有不同的解决方法,培养有条理地进行思考的能力。 3.经历数学知识的应用过程,感受自己身边的数学知识,体会学数学、用数学的乐趣。 二、学生分析 学生认识了0~20并掌握了20以内的加减法后,已具备了解决一些简单实际问题的能力。但由于日常教学中,班上的人数较多,活动空间有限,组织起来也较困难。如何创造性地使用教材,以便全班同学都能在有限的时间和空间内,主动、有序、愉快地参与到各个活动中来,是本节课急需解决的一个问题。
大家好,我今天的说课内容是《6和7 的认识》,下面,我将从教学背景、教学目标、教法学法、教学用具、教学过程、教学特色等六个方面来谈。一、教学背景(一)教材分析本节课是新人教版一年级上册第五单元“6~10的认识和加减法”的“6和7”部分的第一课时“6和7的认识”,即教材第39到40页的内容。从教材内容来看,这两页可以分为五个部分:情境导入、6和7的表示、5、6、7的大小关系、7与第7的区别(也可以说是基数与序数的区别)、6和7的书写。与本节课相关的内容还有第43页练习九中的1~3小题。在学习本节课内容之前,我们已经学习了0~5的认识,“>”“<”“=”等符号的表示,第1到第5的认识。在学习本节课内容之后,我们还要学习8和9的认识、10的认识、11~20各数的认识。
一、说教材说课的内容是《义务教育课程标准实验教科书 数学》人教版一年级上册第五单元:《6—-10的认识和加减法》中的第二课时。这部分教材是为学生快速而正确进行6和7加减法计算做铺垫的内容。在这一阶段通过让学生初步经历从日常生活中抽象出数的过程,借助于生活中的实物和学生的操作活动进行教学,为学生了解数学的用处和体验数学学习的乐趣打下扎实的基础。基于以上认识,我确定本课的教学目标为:1.知识目标:通过动手摆学具教学使学生学会从实际生活中抽象出数,掌握6和7的组成。2.能力目标:培养学生观察、动手操作、口头表达的能力,渗透数学来源于生活,理解数学与日常生活的紧密联系,并运用于生活的辨证唯物主义思想。3.情感目标:通过探究活动,激发学生学习的热情,培养学生主动探究的能力。教材的重点、难点:本节课的重点是:掌握6、7的组成。本课难点是:‘6、7的组成’在实际中的灵活运用。
一、说教材1、教学内容《左右》是义务教育课程标准实验教科书数学一年级上册第二单元“位置”第二课时的内容。2、教学内容的地位与作用《左右》是前后上下的延续性学习。但认识左右比认识前后上下要困难一些。“左右”的含义及其相对性要具有更强的空间观念。通过学习,可以发展学生的空间观念,为以后认识立体图形建立空间立体感打好基础,提高解决实际问题的能力,使学生初步感受数学与生活的联系。3、教学目标(1)认识“左右”的位置关系,体会其相对性。(2)在认识“左右”的过程中,培养初步的判断能力,能够运用“左右”描述物体的位置,并解决简单的实际问题。(3)通过生动有趣的数学活动,使学生体会到学习数学的乐趣,增强对数学学习的兴趣。4、教学重点:认识“左右”的位置关系5、教学难点:体会“左右”的相对性
尊敬的各位领导、老师:大家好!我说课的内容是人教版一年级上册第6页至第8页准备课的第二课时《比多少》。我将从教学背景分析、教学目标、教学流程、教学设计特色几方面谈谈我对这节课的设想。一、教学背景分析(一)教材分析本课时通过让学生开展简单的比较活动,经历并体验比较的过程,初步学习比较的方法,为以后的数学学习做思想方法上的准备。另外这一课,也是后面认知各数大小以及学习后面数学知识的基础。书中是以小猪盖房子的故事开始,激发学生学习兴趣,通过“在情境图中找一找,比一比”,让学生自己寻找可比的对象,选择比较的标准来“比”,给学生较大的自由发挥空间,体现“以人为本”、“以发展为宗旨”的素质教育新理念和目标。(二)学情分析 “比多少”这部分内容,学生在学习它之前,已经学习了数数,有了一定的数学基础,所以学习比多少时学生上路还是比较快的。学生一般在入学前对它们都有了初步的认识,通过对各种物体的感知,已经积累了感性经验。但是在判断时学生往往是凭直觉,不一定会用一一对应的方法来比较两组物体的多少或者用数一数的办法来比较多少。基于以上的了解,我进行了这样的思考。
各位评委、老师,大家好,我今天说课的课题是九年义务教育人教版一年级数学上册第八单元第一课时《9加几》。一.说教材: 《9加几》是一年级上册第八单元的教学内容。本节内容是学生建立“凑十法”计算概念的初次接触,也为以后计算的正确率和提高运算速度打下牢固的基础。教材在编写上注重从学生的生活经验出发,让学生在生动具体的生活环境中学习数学。本单元的内容编排体现了三个特点:一是从情境中提出数学问题,二是呈现多种计算方法,三是让学生动手操作、观察、理解算理、掌握算法。注重培养学生初步应用数学的意识和解决问题的能力。本节课的目标为: (一)知识技能:理解“凑十法”,初步掌握9加几的进位加法的思维过程,并能正确的计算9加几。
一、说教材的地位和作用。??本节内容是“除数是两位数除法的口算除法”,也就是有关整十、整百数除以整十数的口算除法,由于口算在日常生活中有着广泛的应用,是进行笔算和估算的基础,同时,也为学生今后继续学习除数是三位数的除法打基础的,口算和估算技能的掌握程度直接影响笔算除法的学习,所以这部分知识占据着非常重要的地位。四年级学生已经具备了一定的计算基础,已完全掌握表内除法与一位数乘整十、整百、整千数的乘法口算,所以学生对“除数是两位数,商是整十、整百、整千数”的除法口算应该不是很难,重要的是让学生理解它的算理,并运用算理进行快速的口算,还有就是要联系生活实际,培养学生的估算意识,让教学为生活服务。
1、直观认识算盘,知道算盘各部分的名称,学会用算盘计数和数数2、经历用算盘表示数、数数的操作过程,掌握用算盘记数的方法,初步渗透位值思想。3、让学生知道算盘是我国古代的伟大发明之一,是中华民族 对人类文化的一大贡献,从而增强民族自豪感。说教学重点:认识算盘,学会读写算盘上的数,并会用算盘表示数。说教学难点:带有上珠的数的拨法和读法。教学准备:课件、算盘说教学方法:这节课教法主要是引导法、讲授法、练习法;学法主要是动手实践、自主探索、小组合作、展示交流、巩固练习法。教学过程:学生是课堂的主角,教育活动应以学生的学习、兴趣、经验来进行,在教学中教师应成为学生学习的支持者、合作者、引导者。因此,我设计了以下几个教学环节:(一)猜谜语引入新课根据低年级学生的年龄特点,通过猜谜语引入,引发学生的学习兴趣,初步感受算盘的特点。(二)认识算盘
二、说学情:?学生是学习活动的主体。小学四年级的学生在以前的学习中,已经对数据的统计过程有所体验,也学会了一些简单的收集、整理和描述数据的方法,还能根据统计结果回答一些简单的问题,具有初步的统计意识和能力。另外四年级的学生思维比较活跃,喜欢探究发现学习,接受知识的能力也较强,而且也掌握了一定的数学学习方法及策略。这些都是我在教学中可以利用的资源。?纵观学生的知识基础及对教材的剖析,我确立了该课的教学目标以及教学重点和难点。?三、教学目标:?1、使学生充分感受条形统计图的特点,知道条形统计图的意义和用途?2、使学生与老师一起经历条形统计图的制作过程,了解制作条形统计图的一般步骤,初步学会制作条形统计图,并能解决简单的实际问题
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。