(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
解析:根据“全等三角形的对应角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形内角和定理来求∠ACB的度数.解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法总结:本题将三角形内角和与全等三角形的性质综合考查,解答问题时要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.三、板书设计1.全等形与全等三角形的概念:能够完全重合的图形叫做全等形;能够完全重合的三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应角、对应线段相等.首先展示全等形的图片,激发学生兴趣,从图中总结全等形和全等三角形的概念.最后总结全等三角形的性质,通过练习来理解全等三角形的性质并渗透符号语言推理.通过实例熟悉运用全等三角形的性质解决一些简单的实际问题
方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.
解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.
一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
一、活动目标自信是成功的必要条件,是成功的源泉。相信自己行,是一种信念。自信是人对自身力量的一种确信,深信自己一定能做成某件事,实现所追求的目标。本次班会以自信为主题,提升同学们在日常生活和学习中的自信心。二、活动准备全班同学预先学会唱《明天会更好》这首歌两位同学准备好小品,电脑,vcd,活动道具等三、活动过程:1.班主任致辞:我们班是一个团结友爱,上进的班级,同学之间的感情深厚。为了我们在以后的日子里更好的学习,深刻了解自信重要性,我们班特地搞了这次的主题班会。下面宣布主题班会开始。2.男女主持人发言,宣布主题班会开始。3.全班合唱明天会更好。(充分利用电脑,vcd带唱)4.通过演小品。分清自信,自卑,自大,充分说明自信的重要。5、举例说明怎样建立和加强自己的自信心。
二、教材分析跑,是小学体育教学的基本项目之一,本节课是小学体育课教学中最为基础的一节课,也是较为单一、枯燥的一节课,站立式起跑姿势的掌握,对发展学生起跑时的反应能力,提高学生跑的成绩有着重要的作用,因此本课试图通过多种学练方法,提高学生的学练兴趣,让学生认识到掌握站立式起跑的正确动作的重要性,提高学生对站立式起跑学习的重视程度,以便教学目标的更好达成。三、学情分析本课设计对象为五年级学生,他们善于模仿,对新生事物接受能力强,有好奇心,乐于展示自我但自控能力欠缺是这一年龄段的显著特点,大部分学生对短距离跑的练习非常感兴趣,对站立式起跑有所了解,但是动作要领不清楚。本课通过教师适当的点拨,使活泼好动的低年级学生通过在反复的游戏活动中,主动探索并初步掌握浅易的生活知识和学习简单的动作技能,同时多用激励性语言,激发学生的学习动机,以便进一步促进学生的学习兴趣,努力提高动作质量。
一谈话引入: 同学们生活在幸福、温暖的家庭里,受到父母和家人的关心、爱护,似乎不存在什么危险。但是,家庭生活中仍然有许多事情需要备加注意和小心对待,否则很容易发生危险,酿成事故。下面就谈谈冬季安全要注意什么: 二.冬季如何注意交通安全? 1.行走时怎样注意交通安全 1)在道路上行走,要走人行道,没有人行道的道路,要靠路边行走。 2)集体外出时,要有组织、有秩序地列队行走。 3)在没有交通民警指挥的路段,要学会避让机动车辆,不与机动车辆争道抢行。
二、教学过程 一导入 古往今来,凡有成就者无不对自己所从事的事业有强烈、浓厚的兴趣。今天我们就来学习兴趣在学习中的作用。 二新课传授 1、边读课文,边思考:“小雨原来对学习不感兴趣,后来对学习又产生了兴趣?” 提示:原来他不喜欢数学,是因为基础差,家庭环境不好,影响了他对数学的兴趣。后来在老师的帮助下,他有了成功的学习体验,才由厌学变成了乐学。 2、要想做学习的主人,就要培养对学习的兴趣,怎样培养学习的兴趣呢? A、用目标去引导兴趣。B、用成功去激励兴趣。C、用特长去确定兴趣。
二、班会主题:弘扬雷锋精神,争做新时代好少年三、班会目标:1、通过活动,使学生进一步了解雷锋精神的内涵,懂得将崇高的理想信念和道德品质追求融入日常学习生活中。2、通过活动,使学生自觉学习雷锋无私奉献的精神,自觉学习雷锋刻苦钻研、好学上进的精神;时刻用雷锋精神指引奋斗的航向,立起人生的标杆
针之所以能在水面上漂浮,是水的表面张力支撑住了针,使之不会沉下。表面张力是水分子形成的'内聚性的连接。这种内聚性的连接是由于某一部分的分子被吸引到一起,分子间相互挤压,形成一层薄膜。这层薄膜被称作表面张力,它可以托住原本应该沉下的物体。 后面的活动中,洗洁精降低了表面张力,针就浮不住了。 材料准备:一杯水、针、一小条面巾纸、洗洁精 活动过程设计: 一、提问,揭示课题: 1、在杯子里倒一杯清水,然后出示针,问:把针放在水面上,是沉还是浮? 2、学生猜测,然后实践操作。不管学生多么仔细,针总是会沉到杯底。 3、设置问题:有没有办法让针漂浮在水面上呢?
二、教育扶贫政策例子 同学们,有这样一句我们非常熟悉的歌词:“只要人人都献出一点爱,世界将变成美好的人间。”其实这反复吟唱的就是一个再简单不过的真理啊!那就是:同一片蓝天下,一方有难,应该八方支援。 在这里我代表全体老师向大家发出倡议,我们要从自身做起。用爱心去温暖身边的留守儿童,手牵手帮助他们;用我们的一片真诚去打开他们早已关闭许久的心灵;让他们的脸上再次出现阳光灿烂的笑容;鼓励他们自强。父母并不是不爱你们离你们而去,只是为了明天更美!留守并不是谁的错,只是社会发展的一个过程。
二、教学目的和要求 1、使学生明白参加合唱队的目的、了解合唱队的功能、对自己健康成长的意义。。 2、要求学生培养其正确歌唱的姿势。 3、引导学生运用科学的发声方法进行歌唱。 4、要求学生初步掌握起拍与收拍,整齐划一,起得整齐,收得干净。
主b:一直到今天,每年五月初五,中国百姓家家都要浸糯米、洗粽叶、包粽子,其花色品种琳琅满目。除了这些,你们还知道端午节哪些习俗的由来呢?(生结合屈原和黄巢的故事谈喝雄黄酒、悬艾草的由来) 主b:端午的时候,人们还要佩香囊、撮五彩线呢,你们知道五彩线由哪五种颜色组成呢?人们为什么撮五彩线呢? (五彩线是用五种颜色的线制成。这五种颜色不是随便用哪五种颜色就行,而必须是 青、白、红、黑和黄色。这五种颜色从阴阳五行学说上讲,分别代表木、金、火、水、土。同时,分别象征东、西、南、北、中,蕴涵着五方神力,可以驱邪除魔,祛病强身,使人健康长寿。五彩线象征五色龙,系五色线可以降服妖魔鬼怪。民间喜欢用五彩线系在儿童手腕上(男左女右),俗称“长命线”,以祈求压邪避毒,长命百岁。) 3.端午赛诗会。 主a:我们知道屈原是一位伟大的爱国诗人,为了纪念他,所以有人把端午节还称作“诗人节”。现在谁来朗诵一首与端午节有关的诗篇。(生可以选择其他与端午节有关的诗篇)
过程与方法:通过阅读保护听力的资料,了解我们的听力经常受到哪些伤害,知道保护听力的做法。情感、态度、价值观:认识到保护听力的重要性,养成良好的用耳习惯和在公共场所保持肃静的习惯。教学重点认识到保护听力的重要性教学难点知道各种控制噪音的方法教学准备发音罐、报纸、毛巾、棉花等
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。