反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
(1)年会策划及准备期( 月 日 至 月 日):本阶段主要完成通知、节目收集、主持人确定。 (2)年会协调及进展期( 月 日至 月 日):本阶段主要完成节目安排表、礼仪小姐确定、音
一、教材分析“商中间、末尾有0的除法”是人教版义务教育课程标准实验教材数学三年级下册第二单元“除数是一位数的除法”的最后一部分内容。属于“数与代数”的知识领域的数的计算。例6是其中“被除数哪一位上的数是0且前面没有余数时要在商这一位上写0”的情况。在这一例题之前,教材先安排了“基本的笔算除法”和“除法的验算”内容。因此,在学习本例题之前,学生对“除数是一位数的除法”的算理、算法已经基本掌握,因此有了一定的基础。“商中间、末尾有0的除法”只是除法中的特殊情况,是除法计算法则的补充,也是这一单元的难点内容。关键是让学生亲历“0占位”的思维过程,为以后四年级学习“除数是两位数或多位数”的除法奠定基础。
【这样的导入,符合学生的心理特点,激发了学生的好奇心和探究欲望,让学生在猜谜中不知不觉地进入学习状态。顺利过渡到第二个探究新知的教学环节。】(二)探究新知 这一环节我设计了如下2个步骤:一、理解题意;二、探究方法 1. 理解题意课件出示104页的例1,请学生读题并说一说从题中了解到了哪些信息,如果学生只说出从题目中可以知道鸡和兔加起来总共有8只,脚共有26只,引导学生说出题目中隐含的信息,即鸡有两只脚,兔子有四只脚。2.探究方法根据从题目中收集的信息,请学生们分小组交流讨论,用哪些方法可以找到答案。教师在教室里巡视指导,找出学生想到的不同方法并收集起来。学生可能想到很多种不同的方法,我用实物投影仪从易到难呈现给学生观察并交流讨论。学生可能想到以下方法:
一、说教材(一)教材内容地位作用与学情《复式统计表》是人教版小学教材三年级下册第3单元36~37页的内容。这部分内容属于“统计与概率”领域的内容。也是在学生在2年级下册初步学习了“数据收集整理”(简单单式统计表),对数据收集、整理记录与简单的数据分析已有初步体验的基础上开展教学的。教材结合学生日常生活活动喜爱的调查,引入教学。通过教学,既是对已学知识的拓展深化,又为进一步学习条形、折线统计图奠定基础,具有承上启下的作用。通过之前的学习,学生已经对统计表有了一个初步认识,并且能够对数据进行简单的收集、整理、描述,能够根据收集到的数据,经过整理后填写表格,体会到统计表的一般特点,有了这些知识基础,可以帮助学生很好地解决复式统计表的新知建构过程。但对于学生来说,经历数据收集、整理、描述、分析的过程,了解复式统计表的特点,体会复式统计表和单式统计表的联系与区别,我想,对学生来说具有一定的挑战性。
第二环节:探究新知。本环节我设计了以下几个教学活动。活动一:让学生尝试说哪些是轴对称图形,并点名让学生动手对折,继而在学生总结时给出轴对称的定义。活动二:让学生动手尝试画对称轴后,自己动手在书本上画,在察看学生完成情况时及时纠正。活动三:出示两幅表格上的图让学生判别轴对称图形后,让学生尝试在表格上画出轴对称图形另一半后,进行步骤总结。[本环节的设计意图是:《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我前后组织学生进行了几次自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识;让学生在体验成功的同时也掌握和体会数学的学习方法。让学生在探究活动中,实现自主体验,获得自主发展。]
说教材。《鸽巢问题》包含着一个重要而又基本的数学原理——“鸽巢原理”,应用它可以使生活中很多有趣的,又相当复杂的问题,得以简单的解决。我要说的是第一课时,本节教材通过几个直观的例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”去解决。说学情虽然六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,但因为鸽巢原理的实质是揭示了一种存在性,比较抽象,因此要真正让小学生深刻理解,还是很有挑战性的。说教学目标根据《新课程标准》的要求和学生已有的知识基础和认知能力,确定以下教学目标:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。会用“鸽巢原理”解决简单的实际问题。通过“鸽巢原理”的灵活运用,感受数学的魅力,渗透数学模型思想。
2.教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解比例尺的意义,掌握数值比例尺和线段比例尺的应用 ②能力目标:在比例尺的相互转换中,培养学生归纳、概括的能力。 ③情感目标:在比例尺的运用中,让学生体会数学与生活的联系。3.教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解比例尺的意义,能根据比例尺求图上距离或实际距离。难点是:会求一幅图的比例尺,会把数值比例尺与线段比例尺进行转化。二、 说教法学法有这样一句话:听见了,忘记了;看见了,记住了;体验了,理解了。可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。因此,这节课我采用的教法:课前预习法,引导探究法;学法:自主学习法,合作交流法。
一、说教材:1、教学内容:我说课的教学内容是整理和复习2、教学地位:本课是在学习了所有内容的基础上进行教学的,同时又是前面学习的总结。3、教学目标:(1)使学生结合具体的情境,探索并发现(或理解并掌握)所有所学的内容,会运用所学的知识解决简单的实际问题。(2)使学生主动经历自主探索、合作交流的过程,培养观察、比较、分析、归纳、概括等思维能力。(3)使学生在探索新知的过程中, 体会数学与生活的联系,获得成功的体验,增强学好数学的自信心。4、教学重点、难点:为了使学生能比较顺利地达到教学目标,我确定了本课的重点和难点,教学重点和难点是熟练并掌握所学的所有内容。
一、目标学习目标的制定,我主要依据学材、学情、课标这几个方面。基于教材的分析本节内容选自九年级义务教育教科书(人教版)六年级下册第三章第二小节第一部分《圆锥的认识》。这一部分是在学生掌握了圆和圆柱的相关知识的基础之上而安排的内容。我们要想认识圆锥,进一步学习有关它的知识,首先要了解它的特征。因此教材把它安排在这一部分内容的第一节,为下面学习起到一个良好的铺垫作用。由于圆柱与圆锥的知识是密切相关的,因而教材把圆锥的认识安排圆柱的认识之后,为学习圆锥的特征以及体积起到了一个桥梁的作用。因此,我将圆锥的特征作为本节课的学习重点。基于学情的分析由于已经是六年级的学生了,他们的主动性和能动性已经有较大的提高,能够有意识的去主动探索未知世界。同时,他们的思维能力、分析问题的意识和能力也有明显的提高;动手操作能力、语言表达能力有所发展。所以在教学时适宜让学生主动思考,合作交流,动手实践,让学生在具体情境中亲自体验感知圆锥的特征。
在本节课中,我着重引导学生,在独立思考的基础上,学会小组合作交流。具体表现在学会思考,学会观察,学会表达,学会思考教师要设计好问题,学会观察教师要指导学生观察表格和图像,学会表达教师要引导学生如何说,并对学生进行激励性的评价,让学生乐于说,善于说。五、说教学策略和方法活动一:复习引入:1.复习:己知路程和时间,怎样求速度?己知总价和数量,怎样求单价?己知工作总量和工作时间,怎样求效率?2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。【设计意图:在引入过程中,我引导每个学生去思考一组组相关联的量,能用语言叙述,学生通过这一过程,可以深刻感受到生活中存在着大量的相关联的量。本节课的内容比较抽象,较难理解所以我采用复习旧知,引发兴趣来导入新课,让学生将知识联系到生活,使他们乐于学习。】
1.教学内容 《圆柱的体积》是人教版小学数学第十二册第三单元的内容,它包括圆柱体的体积计算公式的推导和运用公式计算体积。2.本节课在教材中所处的地位和作用本节课是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。3.教材的重点和难点圆柱体积的计算是本节课的教学重点。圆柱体积公式的推导过程是本节课的难点。弄清楚圆柱与转化后的近似长方体之间的关系是教学的关键。4.教学目标 知识与技能目标:经历认识圆柱体积、探索圆柱体积计算公式及简单应用的过程;探索并掌握圆柱体积公式;能计算圆柱的体积。情感与态度目标:在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。
今天是元宵佳节,我再祝全校师生元宵节快乐!阖家欢乐!我校全体师生精诚团结、努力拼搏,圆满地度过了我校190华诞,顺利地走过了XX年,学校再度被评为XX区常规管理先进学校,我也在校长岗位工作考评中被评为一等奖。老师们在去年一年中作出了巨大的贡献,同学们在老师的悉心教导下,通过自己的不断努力,也取得了喜人的成绩。我校的几位少先队员代表在XX市第五届少代会上作了精彩展示,“放眼看太湖”读书征文活动获组织奖,在XX区第八届中小学校园艺术节(文艺类)比赛中获合唱一等奖,学校获优秀组织奖。在XX区首届中小学校园电视节目评比中,我校的专题节目《校园故事之:跃动的彩虹》荣获一等奖。 “动感·奥运精神校园行--伙伴计划”获XX区预选赛小组第七名,四(1)班在XX市小学生钢笔字比赛中荣获三等奖,在XX年XX区中小学生田径运动会中荣获小学团体组第四名。我校还获得XX区中小学女子健美操比赛二等奖。同学们还积极参加各级各类少儿书画大赛、征文、美文大赛、钢琴等乐器大赛等,有260多位同学获了奖。还有部分同学注重发展自己的爱好特长,参加书法、国画、古筝、钢琴、二胡等乐器考级,也都顺利通过了考级。XX年度,有一名同学获XX市小学“阅读之星”, 4名学生被评为“XX区学科十佳”,19名学生被评为“XX区三好生”,近300名学生被评为校“三好学生”。
(一)完成校本部和莲溪校区的招生计划。暑假期间,充分利用微信公众号、微信朋友圈、视频号、抖音等各类宣传媒介,对招生进行宣传报道,营造良好的舆论氛围。开放咨询渠道,严格按照招生方案进行招生,确保圆满完成招生计划。(二)继续招纳贤才,进一步充实教师队伍。下半年将继续协助人社局、教体局开展校园招聘和社会招聘,广纳贤才,为学校的可持续发展菱定基础。(三)持续规范教学常规,提高教育教学质量一是抓好教学常规,教学常规的中心环节在课堂,力求课堂效果最大化。二是扎实做好尖子生培养工作。在尖子生培养方面,做到“精心”、“精品”,致力于寻求尖子生培养的良方。
有人说:没有理想,则没有名副其实的品行和生命。人生的美好,就是因为它有远大的理想。没有远大理想的人,他只是人生舞台上来去匆匆的过客。他的生活既没有价值,也不会有意义。因此,我们作为二十一世纪的学生,肩负着时代的重任,必须树立远大而崇高的理想。这种理想,具体讲就是确立以祖国的繁荣昌盛为自己的信念,认真刻苦地学习,掌握科学文化知识,促使信念变成现实。古往今来,历史上凡有成就的科学家,文学家、政治家,他们从小就树立了远大的、崇高的理想。伟大的周恩来总理之所以能用毕生的精力为祖国、为人民建立丰功伟绩,就是因为他从小就树立了“为中华之崛起而读书”这一崇高的理想。“镭”的母亲——居里夫人,之所以能发现镭等新元素,在科学领域作出卓越的贡献
一、开始部分:数数游戏 1.手指指棋盘点数1-5.(注意点数常规) 2.接数练习.(1-50) 二、基本部分:按群计数1-50 1.讲述故事吸引幼儿. 师:今天是对对国五十年的国庆大典,全国上下都很高兴.国王邀请50位客人参加国庆大典,对对国有个规定,进出人员必须两个两个的,要不就要受到惩罚,所以守成门卫兵都很小心,今天更不能出错,出错会掉脑袋的,我们一起来帮他们数.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。