提供各类精美PPT模板下载
当前位置:首页 > Word模板 > 教育教学 > 课件教案> 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册
  • 收藏模板
    下载模板
  • 模板信息
  • 更新时间:2023-10-27
  • 字数:约5541字
  • 页数:约9页
  • 格式:.docx
  • 推荐版本:Office2016及以上版本
  • 售价:5 金币 / 会员免费

您可能喜欢的文档

  • 圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

  • 直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.

  • 查看更多相关Word文档

直线与圆的位置关系教学设计

本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习直线与圆的位置关系。

学生在初中的几何学习中已经接触过直线与圆的位置关系,本章已经学习了直线与圆的方程、点到直线的距离公式、点与圆的位置关系等内容,因此本节课是对已学内容的深化何延伸;另一方面,本节课对于后面学习直线与圆锥曲线的位置关系等内容又是一个铺垫,具有承上启下的地位。坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法。通过坐标系,把点和坐标、曲线和方程联系起来,实现了形和数的统一。

课件教案

课程目标

学科素养

A.能根据给定直线、圆的方程,判断直线与圆的位置关系.

B.能用直线和圆的方程解决一些简单的数学问题与实际问题.

1.数学抽象:直线与圆的位置关系

2.逻辑推理:判断直线与圆的位置关系

3.数学运算:判断直线与圆的位置关系

4.数学建模:直线和圆的方程解决实际问题

重点:判断直线与圆的位置关系

难点:直线和圆的方程解决一些简单的数学问题与实际问题

多媒体

教学过程

教学设计意图

核心素养目标

一、情境导学

“海上生明月,天涯共此时。”,表达了诗人望月怀人的深厚情谊。在海天交于一线的天际,一轮明月慢慢升起,先是探出半个圆圆的小脑袋,然后冉冉上升,和天际线相连,再跃出海面,越来越高,展现着迷人的风采.

这个过程中,月亮看作一个圆,海天交线看作一条直线,月出的过程中也体现了直线与圆的三种位置关系:相交、相切和相离.

在平面几何中,我们研究过直线与圆这两类图形的位置关系,前面我们学习了直线的方程,圆的方程,已经用方程研究两条直线的位置关系,下面我们未必用方程研究两条直线位置关系的方法,利用直线和圆的方程通过定量计算研究直线与圆的位置关系。

二、探究新知

直线与圆的位置关系的判断方法

直线Ax+By+C=0(A,B不同时为0)与圆(x-a)2+(y-b)2=r2(r>0)的位置关系及判断

点睛:几何法更为简洁和常用.

1.直线3x+4y=5与圆x2+y2=16的位置关系是( )

A.相交 B.相切

C.相离 D.相切或相交

解析:圆心到直线的距离为d==1<4,所以直线与圆相交.

答案:A

三、典例解析

例1 已知直线方程mx-y-m-1=0,圆的方程x2+y2-4x-2y+1=0.

当m为何值时,直线与圆

(1)有两个公共点;

(2)只有一个公共点;

(3)没有公共点?

思路分析:可联立方程组,由方程组解的个数判断,也可求出圆心到直线的距离,通过与半径比较大小判断.

解:(方法1)将直线mx-y-m-1=0代入圆的方程,化简、整理,

得(1+m2)x2-2(m2+2m+2)x+m2+4m+4=0.

∵Δ=4m(3m+4),∴当Δ>0,即m>0或m<-时,直线与圆相交,

即直线与圆有两个公共点;

当Δ=0,即m=0或m=-时,直线与圆相切,即直线与圆只有一个公共点;

当Δ<0,即-

(方法2)已知圆的方程可化为(x-2)2+(y-1)2=4,即圆心为(2,1),半径r=2.圆心(2,1)到直线mx-y-m-1=0的距离d=.

当d<2,即m>0或m<-时,直线与圆相交,即直线与圆有两个公共点;

当d=2,即m=0或m=-时,直线与圆相切,即直线与圆只有一个公共点;

当d>2,即-

直线与圆的位置关系的判断方法

直线与圆的位置关系反映在三个方面:

一是点到直线的距离与半径大小的关系;

二是直线与圆的公共点的个数;

三是两方程组成的方程组解的个数.

因此,若给出图形,可根据公共点的个数判断;若给出直线与圆的方程,可选择用几何法或代数法,几何法计算量小,代数法可一同求出交点.解题时可根据条件作出恰当的选择.

例2 过点A(4,-3)作圆C:(x-3)2+(y-1)2=1的切线,求此切线的方程.

思路分析:利用圆心到切线的距离等于圆的半径求出切线斜率,

进而求出切线方程.

解:因为(4-3)2+(-3-1)2=17>1,所以点A在圆外.

(1)若所求切线的斜率存在,设切线斜率为k,

则切线方程为y+3=k(x-4).

因为圆心C(3,1)到切线的距离等于半径,半径为1,

所以=1,即|k+4|=,

所以k2+8k+16=k2+1.解得k=-.所以切线方程为y+3=-(x-4),

即15x+8y-36=0.

(2)若直线斜率不存在,

圆心C(3,1)到直线x=4的距离也为1,

这时直线与圆也相切,所以另一条切线方程是x=4.

综上,所求切线方程为15x+8y-36=0或x=4.

变式探究 过点Q(3,0)作圆x2+y2=4的切线,求此切线方程.

解:容易判断点Q(3,0)在圆外.设切线的方程为y=k(x-3),

即kx-y-3k=0.又圆的圆心为(0,0),半径为2,

所以=2,解得k=,

所以所求切线方程为y=(x-3).

切线方程的求法

1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.

2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解

设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.

例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.

思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.

解法一由得交点A(1,3),B(2,0),

故弦AB的长为|AB|=.

解法二由

消去y,得x2-3x+2=0.

设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),

则由根与系数的关系,得x1+x2=3,x1x2=2.∴|AB|=,

即弦AB的长为.

解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,

其圆心坐标(0,1),半径r=,

点(0,1)到直线l的距离为d=,

所以半弦长为,

所以弦长|AB|=

求直线与圆相交时弦长的两种方法

(1)几何法:如图①,直线l与圆C交于A,B两点,设弦心距为d,圆的半径为r,弦长为|AB|,则有()2+d2=r2,即|AB|=2

(2)代数法:如图②所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A(x1,y1),B(x2,y2),则|AB|=|x1-x2|=|y1-y2|(直线l的斜率k存在).

跟踪训练1 已知直线l经过直线2x-y-3=0和4x-3y-5=0的交点,且与直线x+y-2=0垂直.

(1)求直线l的方程;

(2)若圆C的圆心为点(3,0),直线l被该圆所截得的弦长为2 ,求圆C的标准方程.

解:(1)由已知得:解得

∴两直线交点为(2,1).

设直线l的斜率为k1,∵l与x+y-2=0垂直,∴k1=1,

∵l过点(2,1),∴l的方程为y-1=x-2,即x-y-1=0;

(2)设圆的半径为r,依题意,

圆心(3,0)到直线x-y-1=0的距离为,

则由垂径定理得r2=()2+()2=4,∴r=2,

∴圆的标准方程为(x-3)2+y2=4.

例3.如图,台风中心从课件教案地以每小时千米的速度向东北方向(北偏东)移动,离台风中心不超过千米的地区为危险区域.城市课件教案在地的正东千米处.请建立恰当的平面直角坐标系,解决以下问题:

(1)求台风移动路径所在的直线方程;

(2)求城市课件教案处于危险区域的时间是多少小时?

【解析】(1)以课件教案为原点,正东方向为课件教案轴建立如图所示的平面直角坐标系

则台风中心课件教案的坐标是,台风移动路径所在直线斜率为:

课件教案台风移动路径所在的直线方程为:

(2)以课件教案为圆心,千米为半径作圆,圆和直线相交课件教案两点,则台风中心移到课件教案时,城市课件教案开始受台风影响(危险区),直到课件教案时,解除影响

课件教案课件教案到直线的距离:

,又(小时)

城市处于危险区内的时间是小时

通过具体的情景,帮助学生回顾初中几何中学习过的直线与圆的位置关系,同时提出运用方程思想解法问题的方法。

通过典例解析,帮助学生进一步熟悉两种基本方法,判断直线与圆的位置关系。发展学生数学运算,数学抽象和数学建模的核心素养。

在典例分析和练习中掌握求圆的切线方程的方法,即:代数法与几何法。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。

通过与直线与圆位置关系的应用问题,提升学生数学建模,数形结合,及方程思想,发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。

三、达标检测

1.直线3x+4y+12=0与圆(x-1)2+(y+1)2=9的位置关系是( )

A.过圆心 B.相切

C.相离 D.相交但不过圆心

解析:圆心(1,-1)到直线3x+4y+12=0的距离d=

答案:D

2.若直线x+y+m=0与圆x2+y2=m相切,则m的值是( )

A.0或2 B.2 C.课件教案 D.课件教案或2

解析:∵直线x+y+m=0与圆x2+y2=m相切,∴圆心O(0,0)到直线的距离,解得m=2(舍去0).故选B.

答案:B

3.经过点M(2,1)作圆x2+y2=5的切线,则切线的方程为.

解析:易知点M在圆上,所以M为切点,切点和圆心连线斜率k=,

则切线斜率为-2,切线方程为y-1=-2(x-2),

即2x+y-5=0.

答案:2x+y-5=0

4.直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|= .

解析:圆的方程可化为x2+(y+1)2=4,故圆心C(0,-1),半径r=2,

圆心到直线y=x+1的距离d=,

所以弦长|AB|=2=2=2.

答案:2

5.如图所示,一座圆拱(圆的一部分)桥,当水面在图位置m时,拱顶离水面2 m,水面宽 12 m,当水面下降1 m后,水面宽多少米?

【解析】以圆拱拱顶为坐标原点,以过拱顶的竖直直线为y轴,建立直角坐标系,

设圆心为C,水面所在弦的端点为A、B,则由已知得A(6,-2).设圆的半径为r,则C(0,-r),即圆的方程为x2+(y+r)2=r2.①

将点A的坐标为(6,-2)代入方程①,解得r=10.

∴圆的方程为x2+(y+10)2=100.②

当水面下降1米后,可设点A′的坐标为(x0,-3)(x0>3),

将A′的坐标(x0,-3)代入方程②,求得.

∴水面下降1米后,水面宽为

通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。


最新课件教案文档
  • 精选高中生期末评语

    精选高中生期末评语

    1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。

  • 公司2024第一季度意识形态工作联席会议总结

    公司2024第一季度意识形态工作联席会议总结

    一是要把好正确导向。严格落实主体责任,逐条逐项细化任务,层层传导压力。要抓实思想引领,把理论学习贯穿始终,全身心投入主题教育当中;把理论学习、调查研究、推动发展、检视整改等有机融合、一体推进;坚持学思用贯通、知信行统一,努力在以学铸魂、以学增智、以学正风、以学促干方面取得实实在在的成效。更加深刻领会到******主义思想的科学体系、核心要义、实践要求,进一步坚定了理想信念,锤炼了政治品格,增强了工作本领,要自觉运用的创新理论研究新情况、解决新问题,为西北矿业高质量发展作出贡献。二是要加强应急处事能力。认真组织开展好各类理论宣讲和文化活动,发挥好基层ys*t阵地作用,加强分析预警和应对处置能力,提高发现力、研判力、处置力,起到稳定和引导作用。要坚决唱响主旋律,为“打造陕甘片区高质量发展标杆矿井”、建设“七个一流”能源集团和“精优智特”新淄矿营造良好的舆论氛围。三是加强舆情的搜集及应对。加强职工群众热点问题的舆论引导,做好舆情的收集、分析和研判,把握时、度、效,重视网上和网下舆情应对。

  • 关于2024年上半年工作总结和下半年工作计划

    关于2024年上半年工作总结和下半年工作计划

    二是深耕意识形态。加强意识形态、网络舆论阵地建设和管理,把握重大时间节点,科学分析研判意识形态领域情况,旗帜鲜明反对和抵制各种错误观点,有效防范处置风险隐患。积极响应和高效落实上级党委的决策部署,确保执行不偏向、不变通、不走样。(二)全面深化党的组织建设,锻造坚强有力的基层党组织。一是提高基层党组织建设力量。压实党建责任,从政治高度检视分析党建工作短板弱项,有针对性提出改进工作的思路和办法。持续优化党建考核评价体系。二是纵深推进基层党建,打造坚强战斗堡垒。创新实施党建工作模式,继续打造党建品牌,抓实“五强五化”党组织创建,广泛开展党员教育学习活动,以实际行动推动党建工作和经营发展目标同向、部署同步、工作同力。三是加强高素质专业化党员队伍管理。配齐配强支部党务工作者,把党务工作岗位作为培养锻炼干部的重要平台。

  • XX区民政局党支部开展主题教育工作情况总结报告

    XX区民政局党支部开展主题教育工作情况总结报告

    二要专注于解决问题。根据市委促进经济转型的总要求,聚焦“四个经济”和“双中心”的建设,深入了解基层科技工作、学术交流、组织建设等方面的实际情况,全面了解群众的真实需求,解决相关问题,并针对科技工作中存在的问题,采取实际措施,推动问题的实际解决。三要专注于急难愁盼问题。优化“民声热线”,推动解决一系列基层民生问题,努力将“民声热线”打造成主题教育的关键工具和展示平台。目前,“民声热线”已回应了群众的8个政策问题,并成功解决其中7个问题,真正使人民群众感受到了实质性的变化和效果。接下来,我局将继续深入学习主题教育的精神,借鉴其他单位的优秀经验和方法,以更高的要求、更严格的纪律、更实际的措施和更好的成果,不断深化主题教育的实施,展现新的风貌和活力。

  • 交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言

    交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言

    今年3月,市政府出台《关于加快打造更具特色的“水运XX”的意见》,提出到2025年,“苏南运河全线达到准二级,实现2000吨级舶全天候畅行”。作为“水运XX”建设首战,谏壁闸一线闸扩容工程开工在即,但项目开工前还有许多实际问题亟需解决。结合“到一线去”专项行动,我们深入到谏壁闸一线,详细了解工程前期进展,实地察看谏壁闸周边环境和舶通航情况,不断完善施工设计方案。牢牢把握高质量发展这个首要任务,在学思践悟中开创建功之业,坚定扛起“走在前、挑大梁、多做贡献”的交通责任,奋力推动交通运输高质量发展持续走在前列。以学促干建新功,关键在推动高质量发展持续走在前列。新时代中国特色社会主义思想着重强调立足新发展阶段、贯彻新发展理念、构建新发展格局,推动高质量发展,提出了新发展阶段我国经济高质量发展要坚持的主线、重大战略目标、工作总基调和方法论等,深刻体现了这一思想的重要实践价值。

  • XX区文旅体局2023年工作总结 及2024年工作安排

    XX区文旅体局2023年工作总结 及2024年工作安排

    三、2024年工作计划一是完善基层公共文化服务管理标准化模式,持续在公共文化服务精准化上探索创新,围绕群众需求,不断调整公共文化服务内容和形式,提升群众满意度。推进乡镇(街道)“114861”工程和农村文化“121616”工程,加大已开展活动的上传力度,确保年度目标任务按时保质保量完成。服务“双减”政策,持续做好校外培训机构审批工作,结合我区工作实际和文旅资源优势,进一步丰富我市义务教育阶段学生“双减”后的课外文化生活,推动“双减”政策走深走实。二是结合文旅产业融合发展示范区,全力推进全域旅游示范区创建,严格按照《国家全域旅游示范区验收标准》要求,极推动旅游产品全域布局、旅游要素全域配置、旅游设施全域优化、旅游产业全域覆盖。

今日更新Word
  • 精选高中生期末评语

    精选高中生期末评语

    1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。

  • ××县招商局2024年上半年工作总结

    ××县招商局2024年上半年工作总结

    二是全力推进在谈项目落地。认真落实“首席服务官”责任制,切实做好上海中道易新材料有机硅复配硅油项目、海南中顾垃圾焚烧发电炉渣综合利用项目、天勤生物生物实验基地项目、恺德集团文旅康养产业项目、三一重能风力发电项目、中国供销集团冷链物流项目跟踪对接,协调解决项目落户过程中存在的困难和问题,力争早日实现成果转化。三是强化招商工作考核督办。持续加大全县招商引资工作统筹调度及业务指导,贯彻落实项目建设“6421”时限及“每月通报、季度排名、半年分析、年终奖励”相关要求,通过“比实绩、晒单子、亮数据、拼项目”,进一步营造“比学赶超”浓厚氛围,掀起招商引资和项目建设新热潮。四是持续优化园区企业服务。

  • “四零”承诺服务创建工作总结

    “四零”承诺服务创建工作总结

    (二)坚持问题导向,持续改进工作。要继续在提高工作效率和服务质量上下功夫,积极学习借鉴其他部门及xx关于“四零”承诺服务创建工作的先进经验,同时主动查找并着力解决困扰企业和群众办事创业的难点问题。要进一步探索创新,继续优化工作流程,精简审批程序,缩短办事路径,压缩办理时限,深化政务公开,努力为企业当好“保姆”,为群众提供便利,不断适应新时代人民群众对政务服务的新需求。(三)深化内外宣传,树立良好形象。要深入挖掘并及时总结作风整顿“四零”承诺服务创建工作中形成的典型经验做法,进一步强化内部宣传与工作交流,推动全市创建工作质效整体提升。要面向社会和公众庄严承诺并积极践诺,主动接受监督,同时要依托电台、电视台、报纸及微信、微博等各类媒体大力宣传xx队伍作风整顿“四零”承诺服务创建工作成果,不断扩大社会知情面和群众知晓率。

  • “改作风、提效能”专项行动工作总结

    “改作风、提效能”专项行动工作总结

    (五)服务群众提效能方面。一是政府采购服务提档升级。建成“全区一张网”,各类采购主体所有业务实现“一网通办,提升办事效率;全面实现远程开标和不见面开标,降低供应商成本;要求400万元以上工程采购项目预留采购份额提高至采购比例的40%以上,支持中小企业发展。2022年,我区政府采购荣获”中国政府采购奖“,并以全国第一的成绩获得数字政府采购耕耘奖、新闻宣传奖,以各省中第一的成绩获得年度创新奖。二是财政电子票据便民利民。全区财政电子票据开具量突破1亿张,涉及资金810.87亿元。特别是在医疗领域,全区241家二级以上公立医疗机构均已全部上线医疗收费电子票据,大大解决了群众看病排队等待时间长、缴费取票不方便的问题,让患者”省心、省时、省力“。

  • “大学习、大讨论、大调研”活动情况总结报告

    “大学习、大讨论、大调研”活动情况总结报告

    一、活动开展情况及成效按照省委、市委对“大学习、大讨论、大调研”活动的部署要求,县委立即行动,于8月20日组织召开常委会会议,专题传达学习省委X在读书班上的讲话精神。5月2日,县委召开“大学习、大讨论、大调研”活动推进会,及时对活动开展的相关要求、任务进行再安排再部署,会后制定并下发了活动实施方案、重点课题调研方案、宣传报道方案等系列文件,有效指导活动开展。5月17日、9月1日,县委再次召开常委会会议,专题听取“大学习、大讨论、大调研”活动开展情况汇报,研究部署下阶段工作。9月13日,召开全县“大学习大讨论大调研”活动工作推进座谈会,深入贯彻全省、全市“大学习大讨论大调研”活动工作推进座谈会精神,总结交流活动经验,对下一阶段活动开展进行安排部署。“大学习、大讨论、大调研”活动的有序开展,为砥砺前行、底部崛起的X注入了强大的精神动力。

  • 2024年度工作计划汇编(18篇)

    2024年度工作计划汇编(18篇)

    1.市政基础设施项目5项,总建设里程2.13km,投资概算2.28亿元。其中,烔炀大道(涉铁)工程施工单位已进场,项目部基本建成,正在办理临时用地、用电及用水等相关工作;中铁佰和佰乐(巢湖)二期10KV外线工程已签订施工合同;黄麓镇健康路、纬四路新建工程均已完成清单初稿编制,亟需黄麓镇完成图审工作和健康路新建工程的前期证件办理;公安学院配套道路项目在黄麓镇完成围墙建设后即可进场施工。2.公益性建设项目6项,总建筑面积15.62万㎡,投资概算10.41亿元。其中,居巢区职业教育中心新建工程、巢湖市世纪新都小学扩建工程已完成施工、监理招标挂网,2月上旬完成全部招标工作;合肥职业技术学院大维修三期已完成招标工作,近期签订施工合同后组织进场施工;半汤疗养院净化和医用气体工程已完成招标工作;半汤疗养院智能化工程因投诉暂时中止;巢湖市中医院(中西医结合医院)新建工程正在按照既定计划推进,预计4月中下旬挂网招标。