甲方: 乙方: 甲方(雇用单位) 法定代表人: 地址: 乙方(受雇职工) 性别: 出生日期: 年月 日(或委托代理人居民身份证号码) 邮政编码: 家庭住址: 所属省(直辖市)地区: 县(街道办事处): 文化程度:
阳澄湖大闸蟹是我镇的特产,孩子们对螃蟹很感兴趣,时值金秋、螃蟹上市,孩子们的话题也离不开谈论螃蟹的有关事情。于是我们科研组根据幼儿的兴趣设计了有关螃蟹的一系列活动。也结合我园开展的市级课题“开发本土教育资源,构建园本课程的实践研究”实施,主动积极地进行一系列、多样化的活动,从中掌握正确的学习方法,体验宽松学习的乐趣。经过收集实物、图片、照片等资料,孩子们对螃蟹有了进一步的理解、掌握了相关的知识与外形特征,同时还萌发了各种表现螃蟹形态的欲望。在系列活动中,也制作过螃蟹,但是幼儿余兴未了;于是设计了利用多种材料制作“阳澄湖大闸蟹”这一手工活动。1、看录象(帮助幼儿回忆秋季阳澄湖大闸蟹丰收的景象和人们欢庆的场面,为活动的开展作情感铺垫)2、请小朋友来介绍一下螃蟹是什么样子的?(幼儿自由说说:由于大闸蟹是我镇的特产和骄傲,所以幼儿能说出螃蟹的特征,圆圆的身体、身体两旁各有四条腿、前面有二只大钳子、还有两只眼睛。)
大班幼儿所拥有的经验和技能使他乐于自我发现和探索,他们不满足于知识的传授而更愿意通过自己的努力获得更多的经验和知识。同时,他也能够通过同伴间的合作完成更艰难和具有挑战性的任务,享受成功的满足。《劳动者的工具》所显现的内容是完全静态的成品。大班幼儿会满足于这样的学习方式吗?怎样让静态的东西动起来,成为孩子乐于探索,能够发现的新材料呢?正确选择跟学习材料适合和匹配的教学方法,让枯燥的认知活动成为快乐的事,是成功开展本次活动的精髓。思路定位:1.选择幼儿熟知的、同时具有安全操作性日常生活工具作为本次科学活动的探索和认知对象。引导幼儿用“陌生”的眼光去重新审视熟悉的材料,激发好奇心和活动的兴趣,2.让静态的材料“动”起来。将认知的重点从被动接受转移到主动发现探索上。通过幼儿的亲历亲为去发现工具的特点,并通过与同伴的交流探讨建构成新的内需的知识。3.在与同伴的合作中常识使用工具并获得成功的体验。通过操作和实践来验证自身的发现,同时也进一步了解工具与人类生活的关系。具体教案与环节分析:[活动目标]1.运用多种感官探索和发现工具的秘密,积极探讨交流自己的发现和见解。2.尝试和同伴合作使用某一工具完成任务,体验合作的快乐和尝试的成功。3.初步了解工具与人类生活的关系,激发自豪感。
2、能合理利用周围生活中的废旧材料来美化生活,增强环保意识。活动准备: 各种罐头、饮料瓶,橡皮泥,黑豆、黄豆、绿豆、玉米、红豆等。活动过程: 1、欣赏花瓶。谈话:小朋友,你们见过花瓶吗?花瓶是什么样子的?老师带来了几幅花瓶图片我们一起来欣赏一下。 2、我们也来做小小设计师来设计花瓶上的图案。 出示图片,帮助幼儿归纳规律
二、活动准备: 1、长条卡纸、图形彩纸、浆糊、抹布。 2、铃儿响叮当的音乐,订书机,皮筋。 三、活动过程: 1、音乐游戏,找朋友。 老师:我们都有好朋友,老师请宝宝们去找找你的好朋友和他抱抱,好吗? 2、学习粘贴图形。 *认识纸张和图形。 老师:瞧,这里也有两个好朋友,他们也想抱在一起,是谁?(出示卡纸)认识大大的卡纸。 (出示彩纸)这是什么纸?认识彩纸。它是什么形状的? 这里还有一些图形,它们是什么形状的呢?(出示方形、三角形、心形)认识这几种图形和颜色。这些图形想和卡纸做朋友,它们怎样才能贴在一起呢?什么能帮助它们?(浆糊)
2.学习形容词:一片片,纷纷扬扬。3.萌发幼儿乐于探索,喜欢大自然的情感。准备:光盘《秋天多么美》,采集树叶,胶棒塑封机。过程:一开始部分: 带领幼儿户外散步,引导幼儿发现秋天大自然的变化。(天凉了,树叶落了)二基本部分:1. 谈话,引出主题。2. 播放光盘,激发幼儿热爱大自然的情感。3. 请幼儿简单描述所采集的树叶。
甲 方: 地 址: 电话: 法定代表人:________________ 职务:____________ 国籍:____________乙 方: 地 址: 电话: 法定代表人:________________ 职务:____________ 国籍:____________兹经双方同意,甲方委托乙方在________________加工________________________________ ,其条款如下:1.来料加工和来件装配的商品和数量:(1)商品名称;(2)数量………共计 台。2.一切所需用的零件和原料由甲方提供,或由乙方在 或 购买,清单附于本合同内。3.每种型号的加工费如下(1) (大写: 美元);(2) (大写: 美元);(3) (大写: 美元)。4.加工所需的主要零件、消耗品及原料由甲方运至____________,若有(某地)
(a)(1)“业主”指 (名称)及其法定继承人,不包括其任何受让人(除承包人同意外)。业主可在本合同项下指定一家采购全权代理机构,如果已经指定,则在投标须知前附表第23栏中指明采购代理机构的名称、采购、监督和支付的范围,以及在招标期间及随后的授标等问题上的责任。(2)“承包人”指其投标书被业主接受的当事人,或其法定继承人,不包括其任何受让人(除业主同意外)。(3)分包人指在合同中提及的承担部分工程施工的当事人或经监理工程师、同意已分包了部分工程的任何当事人,及取得该当事人资格的法定继承人,但不包括其任何受让人。(4)“监理工程师”指由业主指定的为执行合同规定的任务的监理工程师、即 (监理工程师单位名称)或由业主任命并书面通知承包人代行监理工程师职权的当事人。(5)“监理工程师代表”指根据22款规定随时由监理工程师任命的个人。(6)“承包人授权代表”是指由承包人任命由业主批准,在本合同项下代行承包人全权的个人。(7)“熟练工人”指的是熟悉放样、对复杂工程能进行监督的工人,包括设备操作人员。(8)“非熟练工人”指的是持普通手工工具,包括小型动力工具进行施工作业的人员。(b)(l)“合同”指合同条件、规范、图纸、工程量清单、投标书、中标
1.来料加工和来件装配的商品和数量:(1)商品名称;(2)数量………共计 台。2.一切所需用的零件和原料由甲方提供,或由乙方在 或 购买,清单附于本合同内。3.每种型号的加工费如下(1) (大写: 美元);(2) (大写: 美元);(3) (大写: 美元)。4.加工所需的主要零件、消耗品及原料由甲方运至____________,若有(某地)短少或破损,甲方应负责补充供应。5.甲方应于成品交运前1个月,开立信用证(或电汇全部加工费)用于由乙方在____________或____________购买零配件、消耗品及原料费用。6.乙方应在双方同意的时间内完成____________型标准____________的加工和交运,不得延迟,凡发生无法控制的和不可预见的情况例外。7.零件及原料的损耗率:加工时零件及原料损耗率为______%,其损耗部分由甲方免费供应,如损耗率超过_____%,应由乙方补充加工所需之零件和原料。8.若甲方误运原料及零件,或错将原料及零件超运,乙方应将超运部份退回,其费用由甲方承担,若遇有短缺,应由甲方补充。
第九周国旗下讲话稿:从自己做起从现在做起从细节做起让廉洁之花在校园绽放敬爱的老师,亲爱的同学们,大家好!最近,《人民的名义》连续剧引了很多师生的关注。这部反腐题材的电视剧以曲折的故事情节,戏骨们的精湛表演受到了大家的热捧。这也反映出当前的反腐行动和廉洁教育深入人心。为了在我校进一步推进廉洁文化进校园活动,根据我校工作安排,今天我借此机会和大家一起分享廉洁文化进校园的思考。我的的题目是:从自己做起,从细节做起,从现在做起,让廉洁之花在校园绽放首先,同学们会问:什么是廉洁?什么是廉洁文化?屈原在《楚辞·招魂》说:“朕幼清以廉洁兮,身服义尔未末沫。”东汉学者王逸在《楚辞·章句》中注释说:“不受曰廉,不污曰洁。”也就是说不接受他人的馈赠的钱财礼物,不让自己清白的人品受到玷污,就是廉洁。廉洁文化是社会主义先进文化的重要组成部分,是廉洁的理论和行为方式及其相互关系的文化总和。它提倡廉洁自律,秉公办事,为人民服务,清白做人。它要求管理者廉洁自律,执政为民;从业人员爱岗敬业,遵纪守法;社会公共组织处事公道正派,诚实守信。
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。