一、加强组织领导,明确职责分工一是成立了专项行动领导小组,由xx镇镇长助理xx、副镇长xxx任组长,安监科科长、xxx县派出所所长、xx店派出所所长、消防工作站负责人任副组长,各相关部门负责人任组员。领导小组下设办公室在安监科,安监科科长任办公室主任。二是制定印发了《xx镇人民政府关于印发“防风险、除隐患、保平安”消防安全隐患集中排查专项行动方案的通知》,明确了工作目标,排查重点范围,整治突出问题以及镇级政府、行业部门、村(社区)、企事业单位的职责分工,并对具体工作提出了相关要求。三是在全镇企业主要负责人参加的安全会议上,由副镇长李宝华就“防风险、除隐患、保平安”消防安全隐患集中排查专项行动工作进行了部署,要求各单位高度重视,立即行动,全面开展本单位消防安全隐患自查整改工作。二、明确排查重点,全力消除隐患此次消防安全隐患集中排查的范围是全镇各行业、各领域、各辖区的单位场所,在全面排查基础上,重点开展集中整治。一是重点行业领域。包括:仓储物流、建筑施工、文化旅游、商场市场、养老医疗、教育、文物等行业领域,围绕行业火灾风险、履行监管责任、完善组织架构、建立规章制度、落实整改措施等环节开展了排查整治;快递、外卖行业领域,围绕电动自行车源头管控、日常管理、设施建设以及销售门店、出租房屋管理等方面开展了排查整治;电力、燃气行业领域,围绕电器产品质量、电气线路敷设、配备专业电工以及液化石油气存储、运输、销售、使用等环节开展了排查整治。
二是强化学生参与,当好“拉风”服务代言人。组建“小红萌”等品牌志愿服务团队,紧密围绕学生特点设计服务项目,以世界环境日、学习雷锋日系列节日为契机,引导各校少先队员走出校门、进村入户参与环境卫生、垃圾分类等社会实践,在身体力行中增强学生的主体意识和责任观念。2022年以来,组织中小学生深入村居(社区)、农村文化礼堂等地开展各类活动2000余次,参与志愿者达到3万余人次。三是强化社会协同,当好“拉风”潮流主人翁。联合市环保局、市少年宫等单位、社会组织共同开展实地参观学习活动,发挥好环保能源公司、垃圾焚烧发电厂、科普馆等资源场所作用,邀请现场技术人员答疑解惑,通过“大手牵小手”的形式传授垃圾分类、回收、处理专业知识,家校政社多主体、多维度同频共振,营造起“人人有责、人人参与”的浓厚氛围。目前与20余家企业、场馆形成定点联系,已举办100余场次体验活动。
市政协D组坚持用好“第一议题”制度,学深悟透新时代D的创新理论,学出忠诚信仰、学出使命担当、学出本领素养,坚定不移把“两个确立”真正转化为坚决做到“两个维护”的思想自觉、政治自觉、行动自觉。机关干部坚持每天自学x个小时,D组坚持每周开展x次“集中学习+研讨交流”,以《著作选读》等为重点,常态化开展“书香政协——委员邀您共读书”活动,以真学真懂真信真用推动主题教育往深里走、实里走、心里走。xx示范区D工委针对不同层级、不同领域、不同对象,强化分类指导、突出精准施策,将辖区xxx个基层D组织xxxx名D员全部纳入清单化、表格化管理。立足机关、村社区、中小学校、公立医院、国有企业、非公经济组织和社会组织实际,制定工作计划,精心组织分类指导。成立联络组,按照“县级领导联片、科级领导联村、驻村干部负责”机制,层层压实责任,层层传导压力,确保主题教育走深走实。
二、存在的问题及下一步工作打算虽然点位创建工作推进有序,取得了一定的成效,但还存在以下几个方面的问题:一是商场、超市、集贸市场、社会宾馆等商流企业业主对开展创建全国文明城市思想认识有待进一步提高,重视不够,宣传不到位,存在工作思路不清、标准把握不准、统筹安排不细等问题;二是部分市场基础设施老旧、历史欠账较多,服务功能不完善,改造提升难度较大;三是市场服务设施还需进一步加强,集贸市场经营秩序还有待进一步改善;四是各点位在“精细化”创建上还存在一定的差距。下一步,我们将认真贯彻落实此次会议精神,把创建全国文明城市作为贯穿全年的重中之重工作来抓,紧盯任务抓落实、对照标准促提升,按照《x创建全国文明城市工作实施方案》的要求,围绕环境卫生、市场秩序、诚信经营、安全生产等方面,扎实推进任务落实,切实增强创建工作的责任感、使命感、紧迫感,牢固树立“一盘棋”思想和“主人翁”意识,全力以赴完成好年度工作任务。
三、切实加强领导,落实改善医疗服务工作责任1、加强组织管理,务求工作实效。要坚持以人为本,以病人为中心,切实加强组织领导,深入贯彻落实《x进一步改善医疗服务行动计划实施方案》,牢固树立服务意识,做好调研分析,以问题为导向,加强监督和指导,持续改进医疗服务管理,要统筹协调医疗资源,不断完善医疗信息化建设,加强人力资源管理,科学设计服务流程,为改善医疗服务提供基本保障,让人民群众切实感受到改善医疗服务行动计划带来的看得见摸得着的实惠。2、树立典型示范,推广先进经验。要不断发掘和树立改善医疗服务的先进典型,认真总结推广先进经验,宣传推广一批示范岗位、示范个人,形成典型带动、示范引领的工作氛围。要将宣传工作与改善医疗服务同步推进,加强与各类媒体的沟通合作,做到集中宣传与日常宣传相结合,传统媒体宣传与新兴媒体宣传相结合,持续宣传改善医疗服务典型和成效。
社会宣传营造氛围。x月xx日,xx自治县开展了全民国家安全教育日宣传活动。活动现场悬挂了宣传标语、展出了宣传展板,向市民群众发放各种宣传资料,并现场为群众答疑解惑有关国家安全、反间防谍、反邪教、反恐防暴、网络电信诈骗、消防安全等方面的知识,切实提高群众对国家安全的了解。教育宣传进校园。x月xx日,xx县各中小学开展了国家安全教育日主题班会,xx县公安局民警围绕中小学生的学习生活实际,通过以案说法、现场互动等方式,向同学们宣传国家安全相关法律法规,引导学生了解国家安全形势,增强学生们的国家安全意识,让广大青少年从小就树立国家安全意识。携手企业全民参与。xx自治县创新宣传方式,携手饿了么xx分公司、xx外卖和xx、xx等x家快递公司,结合线下配送业务,把xxxxx余名骑手和快递员变为“国家安全宣传使者”,把相关宣传小卡片和短信息随着外卖订单和快递包裹的配送一并送到市民手中。
介绍人物,导入新课 1、启发谈话。课前同学们自己已经读过了课文,查阅了有关资料,谁能向大家介绍一下高尔基? 2、学生之间交流收集的有关高尔基的资料。 3、师出示高尔基的画像,并归纳:高尔基(1886年~1936年),是苏联伟大的无产阶级文学家,世界著名的文学家。他写了很多书,发表了《童年》、《在人间》、《我的大学》、《母亲》等多部小说以及著名的散文诗《海燕》和一系列剧本。“书籍是人类进步的阶梯”这句脍炙人口的名言,就出自高尔基的笔下,全世界人民都很敬爱他。他的作品在我国广为流传,得到人们的喜爱。今天,我们来学习高尔基与一位小学生之间的故事:小摄影师。(板书,提示“摄”的读音。) 高尔基与小摄影师之间到底发生了什么事呢?我们下面来看课文
老师们、同学们:大家好!今天我国旗下讲话的主题是《关爱残疾人 温暖残疾人》。同学们,我们是幸福的,我们能够唱歌,能够欣赏音乐,还能在美丽的校园里读书……当我们再一次沐浴在阳光的温暖之中;当花草又吐露着醉人的芬芳的时侯,也许,你并没有觉得这个世界有什么不一样。可是,在我们身边的一些人可能永远都看不见花儿的笑容;永远都听不到鸟儿的歌声;甚至永远都没有“站起来”的权力。他们就是我们平时所说的残疾人,他们带着残缺的身体在这个世界上艰难地活着,忍受着常人无法体会的痛苦,经历过无数的磨难,他们哪怕要取得一点点的成绩,都要付出比常人多几倍甚至几十倍的努力。命运造成了残疾人的不幸,好多事情在我们看来是举手之劳,对他们来说却是一种奢望。残疾人是很弱小的群体,他们像一群弱小的鸟儿。其实残疾人最怕的并不是这个,因为生活中的困难可以慢慢的克服,他们怕的是别人的嘲笑声和那种讥讽的眼神。他们需要大家的帮助、关心和理解。
1、通过同位之间互说座位位置,检测知识目标2、3的达成效果。2、通过导学案上的探究一,检测知识目标2、3的达成效果。 3、通过探究二,检测知识目标1、3的达成效果。 4、通过课堂反馈,检测总体教学目标的达成效果。本节课遵循分层施教的原则,以适应不同学生的发展与提高,针对学生回答问题本着多鼓励、少批评的原则,具体从以下几方面进行评价:1、通过学生独立思考、参与小组交流和班级集体展示,教师课堂观察学生的表现,了解学生对知识的理解和掌握情况。教师进行适时的反应评价,同时促进学生的自评与互评。2、通过设计课堂互说座位、探究一、二及达标检测题,检测学习目标达成情况,同时有利于学生完成对自己的评价。3.通过课后作业,了解学生对本课时知识的掌握情况,同时又能检测学生分析解决问题的方法和思路,完成教学反馈评价。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具 高考试题中近一半的试题与这三个“二次”问题有关 本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。课程目标1. 通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。2. 使学生能够运用二次函数及其图像,性质解决实际问题. 3. 渗透数形结合思想,进一步培养学生综合解题能力。数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;
本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。