一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
〖设计意图:使学生更深刻更正确地领悟价值观的重要作用,初步树立了正确的价值观,并下决心在价值观的引导下要做一位“诚实守信”的好少年。〗第四环节:快乐品味价值1. PPT分三个层面出示24字核心价值观,请全班同学集体朗诵,并尝试用自己的.话理解24个字的内涵。2.庄严宣誓中队长小结发言后一同面向队旗面向五星红旗庄严宣誓: 接着诵读梁启超先生的《少年中国说》〖通过这一环节让学生进一步巩固核心价值观并达到背诵的目的。让24个字融化在心间,铭刻在脑海里。〗以上四个环节由浅入深, 层层递进,充分调动了学生的多种感官参与活动,促进了学生身心和能力的发展,顺理成章的达到了本次活动的目的。以上就是我对《从小牢记价值观,做诚实守信少年》这节少先队活动课的阐述。存在的不足之处还恳请各位评委老师批评指正。谢谢!
侯宇佳、孙誉函和刘入源同学,通过这个环节,我们想告诉大家:只要我们身边的小事做好了,那就是守纪律、讲文明的表现,就是爱学校爱国家的一种表现!最后我们小队全体队员齐唱《文明守纪歌》,让文明礼仪深深地在大家心中扎根。主持人乙:通过三个小队形式多样的展示,队员们对社会主义核心价值观有了更深刻的体会,最后我们让大家把自己的感悟写在心形纸上,写好后贴在教室墙壁的心愿树上。主持人甲:队员们有的写出了自己对祖国的美好祝愿,有的写出了文明宣传语,有的立志要做道德标兵.....我们的祖国如一棵大树,有了我们青少年的装扮和付出,这棵大树一定会枝繁叶茂,硕果累累的!5、说活动效果1.本节队会在队员们的精心准备下,内容充实、形式多样的表达了孩子们对社会主义核心价值观的理解,而且队员们能联系实际,将其内化成自己在学习和生活中的准则,真正使得社会主义核心价值观走进学生的心灵!
根据《中华人民共和国劳动合同法》,就甲方聘请(以下简称乙方)为甲方兼职会计,甲乙双方在自愿、平等、协商一致的基础上,签订本合同。甲方承诺甲方所介绍公司有关情况均为真实的,不存在隐瞒或误导现象;乙方承诺乙方所介绍自身的一切情况及向甲方提供的一切资料均为真实的,不存在隐瞒或误导现象。
第一条 合同期限1.1 本合同有效期为_________年,自_______年_______月_______日至_______年_______月_______日止。其中试用期为_______个月,自_______年_______月_______日至_______年_______月_______日止。第二条 工作岗位、工作职责2.1 乙方在甲方公司担任兼职会计工作。乙方须按照通常会计职责及甲方确定的岗位责任,完成工作。2.2 乙方的主要工作职责包括但不限于:按会计制度规定设置会计科目,按月出具中文财务报表;计算财务成果及各种税金,提醒按期缴纳各种税款;按月做好财务状况分析;指导出纳的工作等。
在还没有接触会计学这门课之前,我想许多人和我一样只有感性的认识,尽管它与我们的日常生活、工作和学习有密切的关系,甚至有些人已经同会计打过交道,或者已使用过会计凭证,或者阅读过会计报表。但问到我们会计是什么?我们也许会说:会计就是写写、算算。通过学习,我才发现会计并不是那么简单。 “管理活动论 ”者认为,会计是一项具有反映和控制职能的经济管理活动。而 “信息系统论 ”者则认为,会计是一个以提供财务信息为主的经济信息系统。从以上两个观点我们可以理解会计是一个数据处理,进而产生信息,利用这个信息达到加强经济管理,从而实现预期目标的工作或者活动。
XXX软件有限公司 实习财务 20xx.01 – 20xx.01 工作描述:实行财务监督,减少账目交接出错及少账漏记问题。负责和财务对账,开票,熟悉各类开票流程。负责部门的外部协调工作,与技术部、财务部、商务部等部门保持紧密联系,包括但不限于系统问题反馈、异常订单处理,积极沟通解决,推动部门工作的顺利开展
Ø 负责公司的全面财务会计工作;Ø 负责制定并完成公司的财务会计制度、规定和办法;Ø 检查公司财务收支和预算的执行情况,按月编制会计报表,并进行分析汇总;Ø 审核公司原始单据、记账凭证、会计报表和办理日常的会计业务;Ø 协助做好公司税务筹划工作,并负责公司税费台账的登记管理工作;
2020.6-至今 XXX软件有限公司 游戏界面设计师l 设定网络游戏界面视觉创意、风格;l 按照已定界面风格的原形标准,完成各级界面的延展性设计;l 完成网络游戏界面相关的标志、图标、图素的设计与绘制;2020.6-至今 XXX软件有限公司 游戏界面设计师l 游戏产品界面设计、优化产品界面用户体验;l 根据项目的风格要求,设计美观的界面及图标;l 能积极与策划和开发沟通,推进界面及交互设计的最终实现;l 根据游戏内容提出相应的UI优化方案,合理规划UI资源大小;
XX学院学生会活动部 职位:干事 20xx年06月—20xx年09月积极参与学生会各项活动,与其他干事一起参与学生会活动安排,策划布置;主要职责:积极参与学生会各项活动,参与学生会日常工作,完成财务部日常收入支出等开发票工作;工作内容:主要负责校园xxxx活动策划资金消费及各类消耗品购置;配合成员工作,确保后勤保障工作;担任XXX活动的主要负责人,在校内进行活动宣传,联络赞助商,确保活动的顺利开展,并最终取得圆满结束。
20XX.01-20XX.01 / XXX软件有限公司 / 会计师(实习) l 负责公司会计核算,报表编制及月底报税;项目资金财务收取材料发票包管,做好催付工作;l 负责核算,审核工作,按照公司及政府有关部门要求及时编制各种草屋报表病报送相关部门l 负责制凭证出报表,购买发票开具发票,报税,年审等工作。l 负责公司会计核算,报表编制及月底报税;项目资金财务收取材料发票包管,做好催付工作;l 负责核算,审核工作,按照公司及政府有关部门要求及时编制各种草屋报表病报送相关部门;l 负责申报税,做全套帐,出企业所得税清缴报告,订单、入库、采购支付等。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。