教学建议:亿以内数的读法是在万以内数的认识基础上进行教学的,主要是让学生用已有的知识去类推,所以在教学本课时我们有必要对万以内数的认识进行有针对性的复习。如可采用口答形式复习数位顺序及各数位之间的十进关系。对于万以内数的读法,可以出示一组数据如:2005年路桥区前两个月共实现农林、渔业总产值17013万元,其中农业产品6383万元,林业产值94万元,渔业产值7560万元。在对万以内数复习的基础上我们再出示第2页主题图,让学生读一读画面上呈现的6个大数,也可以让学生说说身边听到,看到的大数。在这环节中我们就让学生凭着自己的理解运用旧知识去读数。这里学生肯定会造成认知上的冲突,从而引入新课教学。新课时可以按以下环节进行:1、计数器操作,认识计数单位用计数器数数,拨上一万,然后一万一万地数,一直数到九万后,再加一万是多少?认识十个一万是十万,用同样的方法,完成一百万,一千万,一亿的认识。
探究二:100以内数的大小比较。1、 (媒体出示课本第39页例8鸡蛋图。)师:看这鸡蛋图,谁知道哪边的鸡蛋多一些?你是怎么比较的?(学生可能回答:(1)根据鸡蛋图比较。(2)根据数的顺序比较。(3)根据数的组成比较。)(根据学生回答,点击○媒体出示答案。)2、 师:刚才我们看着鸡蛋图比较了两个数的大小,那如果没有图,我们会不会直接比较两个数的大小呢?我们请计数器来帮忙,谁来拨?(媒体出示计数器)师:谁能来说说每个数位上数的意义,再进行比较,说说比较的方法。(学生已经有了比较20以内数的大小的基础,教师引导学生在此基础上说出:28是由2个十和8个一组成,26是2个十和6个一组成,所以28>26;或者根据数数时28在26后面,所以28>26。)(点击表示28的计算器图,媒体出示28是由2个十和8个一组成;点击表示26的计算器图,媒体出示:26是由2个十和6个一组成;点击“26是由2个十和6个一组成”,媒体出示:28>26。)(师板书:28>26)
1,猜一猜 师:这里有一个盒子,盒子里有一朵花,谁能猜出这朵花是什么颜色的?盒子里的花儿的颜色是确定的,为什么你们会有那么多不同的答案? ……师:好,老师给一个提示:红色和黄色。会是什么颜色呢?师:要想准确猜出球的颜色,有一个统一的答案,怎么办? 师:满足你的愿望,第二个提示:不是红色的。2、猜球游戏: 小朋友看,老师这里有一个白色和一个黄色的乒乓球,现在把它们放到盒子里,我们一起来玩一个猜一猜的游戏,好吗? 师:我摸出其中一个,你猜猜是什么颜色的球呢?师:猜得准吗?老师给你们一些提示吧:我摸出的不是黄球,那我摸出的是什么颜色的球?你是怎么猜的?师:那盒子里面的是什么颜色的球呢?你是怎么猜的?小朋友们很聪明,根据老师的提示能准确地判断出球的颜色,这种方法就是我们今天要学习的简单的推理。
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
【活动目标】1、认识长方体和圆柱体,简单了解它们和长方形、圆形之间的关系。2、搜集生活中的多种长方体和圆柱体的物品,并进行组合造型。3、发展形象思维能力和剪、粘贴的技能。【活动重点、难点】 1、重点认识长方体和正方体。2、难点简单了解它们和长方形、圆形的关系及它们的特征。 【活动准备】1、搜集长方体和正方体的玩具及物品。2、同等大的长方形、圆形雪花片积木。2、剪刀、胶水、彩纸、调查表。 【活动流程】 ㈠幼儿在玩中探索发现玩具的特征,并进行分类。 师:“小朋友老师带来了许多好玩的玩具,我们一起来玩一玩。” 幼儿任意挑玩具,自由玩。师:“刚才你们发现了什么?他们能滚动吗?(幼儿自由回答) 师:“请小朋友把能滚动的玩具放好红色的篮子里,把不能滚动的玩具放到绿色的篮子里。 ㈡让幼儿对正方体和圆柱体进行测量,在测量中验证它们的特征。1、小朋友放的真好,我们一起来看一看能滚动的物体是什么样子的?(幼儿自由回答)我们来看一看不能滚动的玩具是什么样子的?(幼儿回答) 师:小朋友观察的真详细,那这个圆圆的玩具,它两边的圆一样大吗?这个长方形的玩具每个面一样大吗?幼:一样大,不一样大。(幼儿争执不下)2、老师出示纸条,幼儿亲自动手测量,不断验证自己的想法,最好得出结论。3、教师小结:这种身体像柱子一样,而且上下中间一样粗,两头都是一样大的圆形的物体,我们称它为圆柱体,圆柱体放倒了只能朝一个方向滚动。这种身体像盒子一样,有六个面,十二条边,一种每个面都是长方形,一种四个面是长方形的,另外两个面是正方形的物体,我们称它为长方体。
佛山石湾陶瓷发展历史悠久,为了让幼儿感受这张靓丽的历史“名片”的魅力,了解石湾陶瓷栩栩如生的形象和一道道制作工序,在幼儿自己动手制作的过程中掌握简单的制作方法,体验成功感并领略石湾陶瓷的艺术美。
【活动目的】1, 通过拍卖会的角色扮演活动,让学生辨析自己的价值观.2,了解每个人的价值观有所不同,进而学习尊重不同的价值观.【理论分析】人的价值观,在哲学上属于世界观,人生观范畴;在心理学上,则可以看作是一个人社会态度的重要组成部分.个人的价值观,主要受到他的社会文化背景,特别是家庭传统和教育的影响,同时也受制于一个人的个性,能力,情绪等心理因素.本活动主要是角色扮演和价值辨析两种心理辅导方法的综合运用.角色扮演的目的,在于运用戏剧表演的方法,使学生发现问题,了解冲突所在,从而洞察人际关系.由于角色扮演能使人亲身体验和实践他人的角色,从而可以更好地理解他人的处境,体验他人在各种不同情况下的内心情感,同时反应出个人深藏于内心的感情."魔术店"是角色扮演的一种方法,它是一种类似商店内买卖的方法,如让老师扮演店主,店里贩卖各种东西,学生扮演买主,通过拍卖的方式,帮助学生了解有关爱情,友情,健康,金钱等多方面的价值观念.在拍卖过程中,学生个人的价值观念会直接影响他在拍卖时的选择,学生从舍取中可以了解自己的价值观和人生态度,这样有助于学生对自己价值观念的思考和澄清."价值澄清"是美国的大学教授路易斯·拉斯等人在对传统价值观教育进行研究分析的基础上提出来的.价值澄清的目的不是灌输给学生一套事先安排的严谨的价值观,而是通过一定的过程,让学生反省自己的生活,对自己的行为负起责任,从而澄清自己的价值观.这种方法很适合在集体的情境中使用.学生可以在共同的价值辨析讨论中,经过一系列心理湖动的过程来达到主动学习,自我评估,自我改进的目的.【活动形式】小组讨论,价值拍卖会【活动准备】准备拍卖会上需要的号码牌,按学生学号做49个.【适合对象】高中一年级【活动课时】1课时【活动过程】上节课我还欠大家一个回答,关于心理辅导活动课呢,一些同学把它和心理咨询弄浑了,以为心理嘛就是要去心理咨询.个别咨询是同学有了一些困难或苦恼来找心理老师进行个别交流,寻求老师的帮助.而心理辅导课呢,面对的是全班同学,大家在一起游戏,一起交流过程中能够更好地认识自己,也能进一步了解他人,别人往往是自己的一面镜子.通过这个课,希望大家能学会自助和互助.这样说不知道大家有没有清楚一些,课后可以再一起交流,现在回到我们今天的课上.课的主题呢我先卖个关子,先听听我接下来的这个问题.
幼儿园大班的孩子具有初步的计算能力,为了更进一步的提高他们这种能力为进入小学学习做好准备,我在设计《5的组成》时、注重从感知入手、有具体到抽象、通过有趣的游戏,激发幼儿学习兴趣、达到培养幼儿的观察能力和动手动脑能力的目的。 1、教学目标 (1)这节课我主要让幼儿认识5、学会5以内的数量。正确书写5; (2)让幼儿通过有趣活动来学习5的组成、知道5的4种分法和掌握数分号规律; (3)发展幼儿思维的灵活性、培养幼儿对数学活动的兴趣; (4)培养幼儿同伴的协助能力。 2、教学重点 本节课重点是幼儿学习5的组成、知道5有4种分法 3、教学难点 本节课难点是让幼儿书写5、知道5的分成
●教学目标(一)教学知识点1.相似三角形的周长比,面积比与相似比的关系.2. 相似三角形的周长比,面积比在实际中的应用.(二)能 力训练要求1.经历探索相似三角形的 性质的过程,培养学生的探索能力.2.利用相似三角形的性质解决实际问题训练学生的运用能力.(三)情 感与价值观要求1.学 生通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.●教学重点1.相似三角形的周长比、面积比与相似比关系的推导.2.运用相似三角形的比例关系解决实际问题.●教学难点相似三角形周长比、面积比与相似比的关系的推导及运用.●教学方法引导启发式通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的 目的.●教具准备投影片两张第一张:(记作§4.7.2 A)第二张:(记作§4.7.2 B)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中线,即F是AD的中点.∵点E是AB的中点,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四边形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面积为8.易错提醒:在运用“相似三角形的面积比等于相似比的平方”这一性质时,同样要注意是对应三角形的面积比,在本题中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四边形BDFE=1:2之类的错误.三、板书设计相似三角形的周长和面积之比:相似三角形的周长比等于相似比,面积比等于相似比的平方.经历相似三角形的性质的探索过程,培养学生的探索能力.通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体验化归思想.运用相似多边形的周长比,面积比解决实际问题,训练学生的运用能力,增强学生对知识的应用意识.
当Δ=l2-4mn<0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个点P;当Δ=l2-4mn=0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的两个点P;当Δ=l2-4mn>0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的三个点P.方法总结:由于相似情况不明确,因此要分两种情况讨论,注意要找准对应边.三、板书设计相似三角形判定定理的证明判定定理1判定定理2判定定理3本课主要是证明相似三角形判定定理,以学生的自主探究为主,鼓励学生独立思考,多角度分析解决问题,总结常见的辅助线添加方法,使学生的推理能力和几何思维都获得提高,培养学生的探索精神和合作意识.
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法总结:本题主要利用了“直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计1.三角形的内角和定理:三角形的内角和等于180°.2.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余.本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180°这一结论
方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正()A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】 多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是()A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.
1. 在捡菜的过程中进行分类比较,了解韭菜.大蒜.葱的不同特征。2. 在种植过程中,发现根能吸收营养,帮助植物生长。准备: 1韭菜 .大蒜 .葱。2筐若干个(三只以上)。3小花盆若干。
四、做一做(实践)1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。五、试一试(探索)课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体1、以正四面体为例,说出它的顶点数、棱数和面数。2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。3、(延伸):若随意做一个多面体,看看是否还是那个结果。
解析:此题作为一道开放型题,分类的方法非常多,只要能说明分类的理由即可.但要注意:按某一标准分类时,要做到不重不漏,分类标准不同时,分类的结果也就不尽相同.解:本题答案不唯一,如按柱体、锥体、球体分类:(2)(3)(5)和(6)都是柱体,(4)(7)是锥体,(1)是球体.方法总结:生活中常见几何体有两种分类:一种按柱体、锥体、球体分类;一种按平面和曲面分类.探究点二:几何体的形成笔尖画线可以理解为点动成线.使用数学知识解释下列生活中的现象:(1)流星划破夜空,留下美丽的弧线;(2)一条拉直的细线切开了一块豆腐;(3)把一枚硬币立在桌面上用力一转,形成一个球.解析:解释现象关键是看其属于什么运动.解:(1)点动成线;(2)线动成面;(3)面动成体.方法总结:生活中的很多现象都可以用数学知识来解释,关键是要找到生活实例与数学知识的连接点,如第(1)题可将流星看作一个点,则“点动成线”.如图所示,将平面图形绕轴旋转一周,得到的几何体是()
活动目标:1、体验穿大鞋游戏的快乐。2、感受大鞋踏出的不同声音,培养幼儿的音乐感受力。3、尝试创编出不同的节奏,发展幼儿的想像力。活动准备:1. 室外环境 2. 报纸、挂历纸、 硬纸板、木板、塑料布、铁盒、铁盖、塑料瓶等3. 音乐磁带一盒、小鼓一面活动过程: 一、充分感受1、引导幼儿发现穿上大鞋踏在不同物体上的会有不同的声音,丰富幼儿的感受。教师:今天你穿谁的鞋子?幼儿:(我穿妈妈的高跟鞋、爸爸的皮鞋、姐姐的运动鞋、奶奶的布鞋、妈妈的靴子……) 2、教师:我们穿上大鞋从活动室走出来有什么感觉?幼儿:(脚上感觉非常松、很暖和、很舒服、很爽;踏起来声音很响;脚有些穿不稳当;人变高了;觉得有些站不稳好像要摔倒;像走在小山坡一样、像踮着脚尖走路)
主题目标:1、 了解自然现象与人类的关系,结合已有经验讨论对自然现象的认识。2、感受各种自然现象的变化,对自然现象的形成产生兴趣。3、用合适的动作表现自然现象中的情景,并体验身体运动的乐趣。4、通过记录观察,尝试了解简单的气象规律。主题内容:大自然奇趣盎然。蓝天白云,风霜雨露,日出日落,大自然为人类提供了生存的条件,为人类创造了美好生活。幼儿生活在绚丽多彩的大自然中,一切都幼儿感到新奇:“天上为什么会下雨?”“风是从哪里来的?”“为什么云会有各种各样的形状?”
活动目标: 1、乐意参与集体讨论活动,大胆地表述自己的看法,并在相互的交流中学会安静地倾听、获得启发。 2、通过看VCD、讨论等活动,了解一些自我保护的知识,知道在单独情况下遇到一些陌生人时应该具有的警惕性行为。 3、在扮演等活动中感受自我保护的重要性以及遇到危险时能够想办法应对的勇敢精神。 活动准备: 《幼儿画报》图书若干册、配套赠送的VCD故事、幻灯 T课件、随机图片(如一个人在家、遇到过分热心的人等)若干 活动过程: 一、引入 如果你一个人在家的时候遇到了陌生人,怎么办? (幼儿都知道要警惕,不给陌生人开门等,给幼儿心理上作好的铺垫) 教师根据幼儿的讲述,引申出:如果你和陌生人是在外面(如走廊上、草地上、公园里、电梯里等)遇到的,而你又是一个人,那会有什么危险?你会怎么办? (出现问题情境) 二、欣赏与理解故事“电梯里有只大熊” 1、导语:有一只红袋鼠,他一个人乘坐电梯时,在电梯里碰到了一个陌生人,他会怎么办呢? 2、欣赏动画片 3、理解故事
活动目标:1、尝试用恰当的方法排解不良情绪,体验助人自助的乐趣。2、把握故事主题,知道每个人都有自己的长处,学会欣赏自己和他人。 材料的准备:图片,统计表重点:在生气时尝试用恰当的方法排解不良的情绪。难点:学会自我欣赏,知道每个人都有长处。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。