
解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.

方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.

一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。

(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.

解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.

我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.

教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:

解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.

[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.

六、说教学流程良好的教学设想必须通过教学实践来完成的,本课我预设两课时完成:第一课时:学习生字,初读课文,感知课文的主要内容,初步体会“我们”心情的变化。第二课时:感悟课文,体会“我们”“做风筝、放风筝、找风筝”时的心情变化,感悟童真童趣。我本次说课的内容是第二课时的教学。(一)复习导入1.听写词语:风筝 蝴蝶 拔几根 幸福 托着 垂头丧气 半圈树梢 歇一歇 千呼万唤 踪影 磨坊2. 这课文写出了作者童年做风筝放风筝时的快乐的情景。这节课让我们细细体会其中的快乐。(板书:风筝)(设计理念:由回忆放风筝的情景,引入课题,既锻炼了学生的表达能力,又勾起了他们美好的回忆,再次感受放风筝给他们带来的乐趣。让学生在已有生活经验基础上构建知识,使学生在不知不觉中感悟,培养学生在面对新知时,能主动寻找其现实背景的能力,激发了学生学习的积极性。)

一、教材说明我所执教的第五单元的最后一课,古诗二首的第一课时,《凉州词》是一首边塞诗,写的是边塞将士出征前开怀畅饮,一醉方体的情景,诗歌慷慨激昂,豪情满怀,表现出当时战争的残酷,无常和频繁,反映将士们生活的悲惨、痛苦。体现了盛唐边塞诗的特点,本节课的教学目标是:1、学生2个生字,练习写好6个汉字。2、有感情地朗读并背诵课文。3、通过读这首古诗,感悟边关将士悲苦的生活。教学重点和难点是品读悟诗情。

一、 说教材。《观潮》这篇课文是义务教育人教版小学语文四年级上册第一组第一课。这组课文是围绕“自然奇观”的专题来写,《观潮》是这组课文的第一课,起着非常重要的引领作用。本文通过作者对潮的生动描写,让我们看到了大潮的奇特、雄伟、壮观,更让我们领略了大自然的魅力,体会大自然那种魔术般的神奇。编者选编这篇课文的目的,一是为了使学生通过阅读感受钱塘潮之“奇”,激发学生热爱大自然、热爱祖国大好河山的情感;二是为了引导学生一边读书一边想象画面,并通过品味重点词句、重点语段,体会课文在表达上的特点。根据农村中年级学生的特点:知识内容广泛了,很多事情都处于好奇,似懂非懂,开始有独立性,自尊心逐渐增强,思想从单纯走向复杂,开始有自己意向。根据我对新课标的理解,我认为完成这篇课文的学习应该达到以下几个目标:1、 感受大自然的壮观,受到美的熏陶,能把自己的阅读感受与他人交流。2、边读书边想象画面,能联系上下文或结合生活实际体会词句的含义。3、有感情的课文内容课文,背诵课文地3、4自然段。4、认识7个生字,会写13个生字。正确读写“宽阔、笼罩、薄雾”等词语。为了完成以上的教学目标,我要突出引导学生感受钱塘潮的神奇壮观这个重点,突破体会课文中有关语句,想象课文描绘的大潮景象这个难点。

四、说教学方法: 根据新课程标准和理念,并结合学生实际情况,本节课采用: 1.范读教学法,短文生动活波,想象丰富,意蕴深刻,宜于诵读体味。2.设疑引导法:通过设疑引导,鼓励学生多角度探究短文寓意。此外我还用多媒体手段辅助教学。诵读法:短文生动活波,想象丰富,意蕴深刻,宜于诵读体味。讨论法:针对教师提问展开讨论讲述法:通过讲故事的方法。五、说教学过程:(一)故事导入,我来猜多媒体动画展示“女娲补天”的故事,让学生竞猜,并拓展举例,你还读过那些神话故事!如后羿射日,大禹治水,精卫填海,盘古开天辟地,嫦娥奔月等,这些故事都有着雄奇的想像与夸张,但又和现实有一定的联系,它是在人们头脑中经过加工,改造过的现实。今天,我们一起学习《精卫填海》。 设计意图:此环节主要是激发学生的兴趣,拉近学生与神话、与山海经的距离。另外,神话与 传说、民间故事有所不同,教师通过通俗易懂的语言帮助学生对这一概念有一个初步的认识,再自然引出课题。

有感情地朗读课文,理解重点词句,了解爬山虎脚的特点。过程与方法目标:以学生为主体,遵循阅读教学的原则,让学生充分地与文本交流,在自读、感情朗读、品读等形式多样的阅读中,理解课文内容,积累精美的语言文字,学习作者观察和表达的方法,运用到自己的习作中去。情感目标:激发学生留心观察的兴趣,做生活的有心人。教学重点是:通过对词句的理解,了解爬山虎脚的特点。教学难点是:爬山虎是怎样用脚向上爬的。此篇课文的教学设计为两课时,第一课时要让学生初读课文,扫清字词障碍,在读中理清文章的结构层次,整体感知,而后感情朗读。第二课时直扑重点,学习课文三至五自然段爬山虎脚的部分,通过小组合作学习探究,在读中充分体会到作者对爬山虎的观察入微,而且是连续观察了很长时间。以下我着重对第二课时的教学设计作进一步说明。

(一)联系生活、激趣导入新课标指出,应拓宽语文学习和运用的领域,注重跨学科的学习和现代化科技手段的运用,使学生在不同内容和方法的相互交叉、渗透和整合中开阔视野,提高学习效率,初步获得现代社会所需要的语文实践能力。上课前,学生在以前已经学过口语交际介绍自己的家,学生会非常自豪,能踊跃地说。再加上课前对蟋蟀的已知了解,学生已经知道蟋蟀的歌声动听,对蟋蟀的可爱、有趣早已铭记在心。这样二者结合起来,能很好地调动学生学习的兴趣,实现旧知迁移,为学生转换角色,改变学习方式作准备,也为学生发展口语作准备。这样让学生把自己的家和早已熟悉的蟋蟀的住宅联系起来,自然而然地导入课题。

结束后我再次引读:只听一声巨响,混沌一片的东西渐渐分开了。展开多媒体,学生读下半段“轻而清的东西,缓缓上升,变成了天;重而浊的东西,慢慢下降,变成了地。”这一环节是本段的重点,我打算分三步进行。第一步请学生来发现句子中的近义词和反义词;第二步理解两个清的区别;第三步指导朗读,朗读形式多种多样,可以师生配合,男女生合作、带动做朗读等等。在这天地分开之前,轻而清,重而浊的东西是一片混沌,再次理解“混沌”一词。告诉学生今后遇到不懂的词语还有一种方法就是结合上下文来理解。这一段上完之后再全班齐读一遍。 最后指导生字,重点指导“创造”,我在黑板上范写,指导个别笔画,留五分钟给学生写字。 (四)细读品味,感悟精神

(二)自主学习,合作探究研读第1自然段,感受当时环境的恶劣。1.整体感知当时环境的恶劣,引导:自从女娲创造了人类,大地上到处是欢歌笑语,人们一直过着快乐幸福的生活。但是,一天夜里,灾难发生了,自由读第一自然段,说说发生了什么?把相关的语句划出来。预计学生找到下面这句话:远远的天空塌下一大块,露出一个黑黑的大窟窿。地被震裂了,出现了一道道深沟。山冈上燃烧着熊熊大火,田野里到处是洪水。许多人被火围困在山顶上,许多人在水里挣扎。 2.齐读这个句子,说说,此时此刻,你的心里有什么感受?预计学生会说:可怕等。 3.是哪些词语让你觉得可怕呢?拿起笔用曲线画出来。预计学生会画出下列词语:黑黑的大窟窿,一道道深沟,熊熊大火,到处是洪水,围困,挣扎。随机出示课件。请大家默读这些词语,想象眼前出现了怎样的画面呢?预设学生能够想象:地上的人们,随时都有可能掉进深沟;有的人们被火围困;有些人正在洪水中挣扎,随时都有生命危险…… 4.在学生充分感受想象的基础上,引导:同学们,就带着这样的画面,带着这一副悲惨的景象,轻轻地读一读这个句子吧。男女学生轻声读。

【说教材】《西门豹》讲述了西门豹初到邺地,发现田地荒芜,人烟稀少,他了解到是巫婆和官绅借口河伯娶媳妇欺骗老百姓,他将计就计,最后惩治了官绅和巫婆的事。 【说教学目标】1.知识目标:学习课文,了解西门豹是怎样破除迷信的。 2.语感目标:正确、流利、有感情地朗读课文。3.能力目标:掌握学习方法。体会用词的贴切、生动,养成积累好词佳句的习惯。 4.品德目标:受到尊重科学的育。 【说教学重点】了解西门豹如何巧妙破除迷信,为百姓除害的。 【说教学难点】西门豹破除迷信的经过。 【说教法】

二、说教学目标: 1.认识7个生字,会写13个生字。正确读写“住宅、隐蔽、随遇而安”等词语。2.能正确、流利、有感情地朗读课文,掌握课文的主要内容,读懂蟋蟀的“住宅”是怎样建成的。体会作者拟人的习作方法。 3.学习蟋蟀那种不辞辛苦和不肯随遇而安的精神,激发观察自然界的兴趣。三、说教学重难点:1.了解蟋蟀的住宅是怎样建成的;2.体会蟋蟀吃苦耐劳、不肯随遇而安的精神。四、说教学方法: 长期以来一直关注教师如何教,而忽视了学生如何学,在这节课中将关注学生的学法,用学生的“学”决定教师的“教”。从而引导学生自主、合作、探究学习。在学生自主阅读的基础上受到熏陶感染,再把学生的感悟与老师、同学交流。 在此设计理念的指导下我准备采用以下教法:情趣教学法、多媒体直观法、以读促悟法。学生主要采用以下学法:自主质疑法、合作解疑法、自读自悟法。

(一)创设意境,引入新课。 课件展示几幅画面,引起学生思索——夕阳西下,照红了江面,晚归的鸟儿低飞在江面上。你会怎么描绘这样的画面呢? 归纳学生发言,秋天的江面上,夕阳的余晖洒满江面,归巢的鸟儿从江面飞过,岸边的芦苇在微风中轻轻摇晃,这样的图景给人一种怎样的感受?让我们一起来走进刘大白先生的小诗《秋晚的江上》。(二)初读诗歌。 1.了解作者。(课件展示)刘大白(1880——1932)浙江绍兴人,与鲁迅先生是同乡好友,现代著名诗人,文学史家。 2.读准字音。(课件展示)教师范读(注意语速、语气、语调),学生齐读,小组互读,指名读,读准字音,感受诗歌内涵。(三)赏析诗歌。 1.思考感悟:(课件展示)(1)边读边在脑中构思一幅画面,画面上会出现什么景物?(归鸟、斜阳、芦苇)这是什么季节、什么时间、什么地点,有什么景物?(秋天的晚上,在江面上,出现了归鸟、夕阳、芦苇。)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。