(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.
(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
2.分析写作特点。本文是如何把议论、抒情和叙事融为一体的?预设 本文是奏章,内容是作者出师前向后主刘禅陈述意见,提出修明政治、兴复汉室的主张。因此,全文以议论为主,在议论中融以叙事和抒情,以做到对刘禅晓之以理、动之以情而达到劝谏的目的。论述切中要害,分析透辟,针对性强;寓情于议,情理交融,言辞恳切,说服力强。叙事,寓情于事,委婉动人,感情真挚。所叙之事如推荐贤才,讲身世,谈经历,都是为议论服务,使他对刘禅提出的建议与要求有理有据,更能使人信服。 结束语:诸葛亮知恩图报,忠心为国。他有高度的责任感、使命感,他为国家鞠躬尽瘁,死而后已,当我们吟诵“出师未捷身先死,长使英雄泪满襟”的诗句时,会深深地体味出杜甫对诸葛亮的仰慕和惋惜之情;当我们解读“出师一表真名世,千载谁堪伯仲间”这两句诗时,更是深深地被陆游满腔豪情所感染。四、布置作业
此外,以研训项目包和名师工作室为平台,开展教师学科交流研讨活动、读书分享、听专家讲座等活动。这样,有效地促进了教师专业素养的提高。总之,我们通过丰富多彩的教学研究活动,积极探索行之有效的新课程实施模式,优化我校的课堂教学,促进教育教学质量的巩固与提高。三、取得的成绩我校建校4个月以来,教师在区级教育主管部门组织开展的论文评选中,获奖达9篇,在区级教育主管部门组织的教坛新星评选活动中,我校2名教师获得此项荣誉。四、存在问题我校积极开展校本培训活动,但也存在一些不足,有待改进,具体表现在:二级培训的质量有待提高;教学研究成果需继续加强;校本培训课程开发要有深度。五、今后工作通过本学期的教师培训,促进了教师专业成长。针对以上存在的不足,我校将采取措施,完善工作,为建设业务精良的教师队伍而不懈努力。
(一)有效施工期所剩不多。我区地处高寒,雨水较多,有效施工期短。所以,我们在去年X月份就召开了项目动员会议,安排部署项目建设。目前来看,今年的有效施工期只有X天了,但我们还有很多工作要做,要想尽一切办法,调动一切力量,切实将年初确定的工作任务完成好。
(一)有效施工期所剩不多。我区地处高寒,雨水较多,有效施工期短。所以,我们在去年X月份就召开了项目动员会议,安排部署项目建设。目前来看,今年的有效施工期只有X天了,但我们还有很多工作要做,要想尽一切办法,调动一切力量,切实将年初确定的工作任务完成好。
(一)结构不够优。一是年龄结构不合理,编内人员(公务员和事业编制人员)年龄在*周岁以下的只有*人,占编内人员*%。二是学历偏低,学历为全日制大专及以下的有*人,占*%,硕士研究生只有*人;三是专业化水平不高,具有专业技术职称的只有*人,占比*%,其中工程师职称只有*人,难以适应专业化、高质量工作的需求。作为中坚力量的*名中层干部中,大专及以下学历占*%,专业型干部不足*%,编外人员占一半以上。
(一)村民小组历史沿革 新中国成立伊始,*县共建立*个区(镇),*个乡。*年*月,全县划为*个区和惠州镇,原*个乡划为*个小乡镇,此后区、镇、乡划分多有变动,各村归属乡管理。*年*月,*县第一个人民公社——东风人民公社成立,至*月*日,全县实现公社化。*年,全县划分为*个公社,下设生产大队,生产大队下设生产队,即村民小组前身。此后,*县根据实际对公社进行多次调整,但“公社—生产大队—生产小队”体制未发生根本变化。“文革”结束时,全县共*个公社。*年,开展政社分开工作,公社改区,设区公所,并在农村建立*个乡政权。*年,全县设*个镇和*个乡,乡镇下辖行政村,村设村民小组。此后,历经数次变革,至目前,全区下辖*镇*街道,计*个村和*个村民小组。
1、传统的工作思路和服务方式亟待转变。 当前我国已经开始进入老龄社会,老干部人员的增加、人员结构以及对服务工作的要求也发生了很大的变化,在新的形势与任务面前,老干部工作如何创新,如何不断开拓工作新思路,如何创新工作方式方法,是我们亟待转变和解决的重要问题之一。 2、离休干部与退休干部的管理服务工作中存在的矛盾亟待解决。 当前离退休干部的整体状况是,离休干部的人员比重越来越小,退休干部的人员比重越来越大,工作压力越来越大,在政策落实上要求向离休干部倾斜,实际工作量上以服务退休干部为主,这是现实工作中普遍存在的问题,做管理型服务还是做劳务型服务,关系到今后的工作导向,这同样是需要认真研究的一个重要问题。
(一)机构编制人员方面 区退役军人服务中心及各街道(镇)、社区(村)退役军人服务站挂牌成立,在全区形成了覆盖区、街道(镇)、社区(村)三级退役军人服务体系。目前,区委编委已批复区退役军人服务中心事业编制编制xx名;街道(镇)、社会人员编制尚未明确。 (二)工作经费方面 区财政现已向区退役军人事务局及服务中心拨付各项工作经费xxx万元。其中,先期拨付开办经费xx万元用于购置办公设备,后追加工作经费xxx万元,信息采集工作经费x万元,光荣牌制作经费x万元。
一、深刻认识国家推进自由贸易试验区建设的背景和重要意义,提升xx自由贸易试验区建设的主动性和前瞻性 今年x月21日国家公布新增xx、xx、xx三个自由贸易试验区并扩大xx自由贸易试验区范围,距离去年x月xx日公布新增x个自由贸易试验区,时间间隔仅一年多,加快推进自由贸易试验区建设势在必行。 首先,加快推进自由贸易试验区建设是应对当前贸易保护主义,扩大开放的需要。当下,受xx影响,WTO的运行和规则遭到了极大破坏,中国被动与xx脱钩的压力越来越大。在这种情况下,通过扩大对外开放,加强中非合作、xx合作、xx与xx国家合作、xx合作、与一带一路国家合作来弥补和对冲xx合作停滞甚至倒退对中国经济社会发展的影响显得尤为迫切。因此,xx应在自由贸易试验区建设过程中,主动对接国家重大战略,加强与全球国际经贸规则相对接,在国际经贸特别是中非经贸的发展中发挥重要作用。
1.项目建设的重视程度不够。部分单位对项目谋划、项目入库、项目建设的重要性认识不够,存在被动应付情绪,对新政策缺乏探查能力,对已有政策缺乏深入研究,项目谋划缺乏前瞻性,不能及时抢抓政策机遇,符合政策的项目没有及早谋划入库,导致招引项目因未提前入库而无法落地,错失了发展的有利时机。项目经办人员变动频繁、业务不精,对项目资金申请工作认识不足,对中央和省预算内项目申报政策缺乏基本了解,在项目申报前期对申报程序不熟悉,申报项目时不了解申报特点与申报范围,项目设计时找不到项目与申报条件的最佳结合点,错失了申报机会。 2.项目审批效率不高。虽然积极响应了国家“放管服”改革,精简了办事流程、压减了办理时限,但项目前期手续繁琐、审批部门多、环节交叉、代办衔接不顺畅,业务审查、专业测量、现场核查等环节不够紧凑等问题任然存在,一些涉及上级审批的事项,如规划调整、土地变性、图纸审查等手续,办理周期仍然较长,严重影响了项目进展。 3.项目前期准备工作不充分。部分项目决策程序不规范,项目安排没有充分考虑用地规划和现实约束性指标,委托编制规划时缺乏预见性,对中、远期发展需求和建设项目用地规划考虑不全面,招引项目落地时,要么不符合规划,无“地”可用,要么不符合投资方意愿,不愿意选,而规划修编程序复杂、耗时长,部分项目业主等不住、拖不起,只能放弃投资。如*新能源汽车销售服务有限公司的新能源汽车充电桩建设项目,总投资*亿元,因现行的城乡规划中没有将新能源汽车充电设施建设纳入规划,致使项目无法投资建设。 4.项目储备不足结构单一。受产业结构调整、实体经济亏损、市场供求关系等影响,社会资本对工业企业的投资意愿下降,加之土地、税收等招商引资优惠政策的清理规范,招商引资的吸引力不断下降,全区现有重大产业项目、高新技术项目、工业项目、生态项目、文旅项目数量少、规模小,总体投资增幅不大,尤其缺少投资超*亿元的重特大项目,工业固投整体缺乏后续重大项目支撑,工业发展后劲不足,文旅项目缺乏特色和亮点,无法吸引和留住游客,项目对产业链和我区经济发展的带动作用偏弱。 5.服务工作有所欠缺。受当前体制机制影响,部门服务规范有余,灵活不够,工作人员业务水平不高,对项目申报人员所咨询的问题有时不能准确回答和一次性告知,造成服务对象多次往返。一些基层的项目帮办人员主体作用发挥不够,缺乏想企业所想,急企业所急的主动服务意识。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。