提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

【高教版】中职数学基础模块上册:2.4《含绝对值的不等式》教案设计

  • 中班科学教案:有趣的泥土

    中班科学教案:有趣的泥土

    2、引导幼儿运用多种泥工技能,进行泥工创作,启发幼儿合理利用辅助材料和工具塑造作品,运用分泥、连接、捏边等技能塑造组合物体。3、鼓励幼儿能够按自己的意愿进行创造活动,充分发挥幼儿想象力、创造力。 [活动准备]1、准备大量不同种类的土(红土、黄土、沙土等)、水、玩泥工具、和好的泥(少量)、各种泥玩具。2、准备相关的图片资料,如:水土流失图、填海造田图。3、录音机、《泥娃娃》歌曲磁带。 [活动过程]1、感知观察土。  出示准备好的土,请幼儿仔细观察、感知。“请小朋友用手摸一摸,用小棍翻一翻,看看土是什么样的?闻闻有什么气味?看看土里有什么?各种 土有什么不同?”

  • 中班科学教案:好玩的影子

    中班科学教案:好玩的影子

    2、在游戏中探索影子的方位变化特点。3、愿意参加探索游戏,勇于表达自己的想法和认识。活动准备:选择一个晴朗的天气活动过程:一、猜谜,激发幼儿探索影子的兴趣。1、请幼儿猜谜语:我有个好朋友,我走它也走,我停它也停,我到哪,它到哪,紧紧跟在我身边,这是谁?2、找自己的影子。 3、相互交流。

  • 中班科学教案:下雨的秘密

    中班科学教案:下雨的秘密

    2、了解雨与人类的关系。3、激发幼儿观察、发现、探索自然的兴趣。 活动准备1、木偶台、木偶小兔、兔妈妈。2、酒精灯、烧杯、玻璃片、玻璃杯、火柴。3、投影机、故事《小水滴旅行记》、有关幻灯片、磁带。 活动过程一、教师木偶表演,提出尝试问题  教师以兔妈妈带小兔出去玩,忽然天下雨了,小兔问妈妈:“天上为什么会下雨?”的故事情景导放课题,提出问题:“小朋友,你知道天上为什么会下雨吗?” 二、小朋友做小实验(幼儿第一次尝试,分组活动)1、幼儿点燃酒精灯,把水加热。2、教师提出尝试问题:仔细观察一下,你发现了什么?3、小结:水热了就会有水蒸气,许多水蒸气向上跑的现象叫做“蒸发”。4、讨论:你平时看到过“蒸发”现象吗?  (发散性思维)

  • 中班科学教案:花儿的礼物

    中班科学教案:花儿的礼物

    2、创造性地设计花的礼物,使幼儿进一步萌发爱花、护花的意识。 活动准备:  场地布置(花仙子的花园)  金银花露、玫瑰花茶、菊花茶、桂花糕、蜂蜜、花卉精油、熏香用品、干花袋、花朵装饰品、春姑娘图片、花朵头箍、纸、记号笔。 活动流程:  观察环境,引出主题—观察尝试,操作发现—自我创造、描述构思—情感激发 一、观察环境,感知花的美1、带入场地:今天我们去花仙子的花园玩,好吗?2、观察环境:你们觉得花仙子的花园怎么样?为什么漂亮?  看见花你感到怎么样?

  • 中班科学教案:美丽的泡泡

    中班科学教案:美丽的泡泡

    2、在玩乐中发现哪些液体可以吹出泡泡,并了解泡泡液体受光的折射可呈现美丽多彩的颜色。 3、初步探索出不同形状的圈吹出的泡泡都是一致的。 4、尝试用简单的符号学做记录。【活动准备】 1、割好的大饮料瓶五个、清水、肥皂液、洗衣粉液、白猫洗涤剂液、泡泡水。 2、每个幼儿一个吸管,不同形状的小铁圈若干(长方形、圆形、三角形)。 3、做好的笑脸图形和不高兴脸型图形若干个、裁割好的吹塑板五张、大夹子五个、推动的黑板一块、彩色打印的五种液体的图案、大数字1、2、3、4、5。小桌子五张、三张画好长方形、正方形、圆形的纸、一支记号笔 4、先把五种液体的图案分别贴在五张吹塑板上,然后再把五个数字分别贴在五个图案的上面,把图案遮挡好后用夹子夹住吹塑板放在五张桌子上。【活动过程】 一、课程导入:教师以游戏<<吹泡泡>>引起幼儿的兴趣,和幼儿谈话。 二、探索活动:哪种液体可以吹出泡泡。 教师介绍:小朋友们,你们吹过泡泡吗?(吹过)我这儿有五种液体,他们分别是清水、肥皂液、洗衣粉水、洗涤剂水和泡泡水,请你们猜一猜哪种液体能吹出泡泡?哪种液体吹出的泡泡最漂亮,哪种液体吹不出泡泡。 1、请幼儿进行大胆尝试,启发幼儿自己学做记录。幼儿自己拿一根吸管挨着吹,觉得不能吹泡泡的拿一个不高兴的脸贴在用大夹子撑起的液体板放上,能吹泡泡的拿一个笑脸也贴在液体板上。 2、鼓励幼儿进行尝试,教师巡回指导。 3、先让幼儿观看幼儿自己做的记录,然后老师依次把数字拿开,露出背后的液体让幼儿初步了解每一组都是什么液体。 4、教师从1号桌依次吹泡泡与幼儿猜想进行对照来验证幼儿自己的试验是否正确。

  • 中班科学教案:多彩的肥皂

    中班科学教案:多彩的肥皂

    [活动准备]1、幼儿从家中带来不同种类的肥皂:香皂、透明皂、药皂、旅游皂、液体皂等;2、新式肥皂的幻灯片;3、肥皂架子;4、幼儿提前了解自带的肥皂 [活动过程]  一、调动幼儿已有生活经验,认识肥皂种类的多样性和肥皂的作用。1、猜一猜,引发幼儿对活动的兴趣。  引导语:有一样东西,只要你和它交上朋友,它就会让你变得讲卫生爱清洁,而且我们天天都用它,这样东西是什么呢?2、幼儿能用有节奏的儿歌说出肥皂的名称和作用。  设计提问:你带的是什么肥皂?它是用来干什么的?3、经验提升:知道肥皂的种类很多,而且每种肥皂都有它的专用性。  二、感知肥皂的形状、颜色、气味、大小等的特点和多样性,增加幼儿对肥皂的喜爱之

  • 中班科学课件教案:会变的水

    中班科学课件教案:会变的水

    准备小容器、蜡烛、颜料等若干份,图书《小水滴旅行》(人民教育出版社出版“萤火虫”画丛)。过程活动(一)冻冰花1.带领幼儿在院子里或幼儿园附近寻找结冰的地方。师生一起在一块平坦的土地上泼一些水,建造一个小小滑冰场。让幼儿在自己建的小冰场上滑冰、拉冰车,充分地感知冰的特性(凉、滑、硬、脆),享受冰上游戏的快乐。中循环

  • 人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(1)

    人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(1)

    本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;

  • 人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(2)

    人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(2)

    本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.

  • 人教版高中政治必修4哲学的基本问题精品教案

    人教版高中政治必修4哲学的基本问题精品教案

    一、教材分析本框题包括什么是哲学的基本问题、为什么思维和存在的关系问题是哲学的基本问题两个目题。第一个问题:什么是哲学的基本问题。其逻辑顺序是:什么是哲学的基本问题→哲学的基本问题所包含的两方面的内容→对哲学的基本问题第一方面内容的不同回答是划分唯物主义和唯心主义的标准→对哲学的基本问题第二方面内容的不同回答是划分可知论和不可知论的标准。第二个问题:为什么思维和存在的关系问题是哲学的基本问题。其 逻辑顺序是:思维和存在的关系问题是人们在现实生活和实践活动中遇到的和无法回避的基本问题→思维和存在的关系问题,是一切哲学都不能回避的、必须回答的问题→思维和存在的关系问题,贯穿于哲学发展的始终,对这个问题的不同回答决定着各种哲学的基本性质和方向,决定着对其它哲学问题的回答。 二、教学目标(一)知识目标(1)识记哲学的基本问题(2)解释哲学的基本问题

  • 中班音乐教案:风中的童话

    中班音乐教案:风中的童话

    活动准备:1、磁带《风中的童话》ABA段。2、多媒体课件。活动过程:一、通过游戏帮助幼儿理解音乐三段体结构。1、根据弦外音做适合的动作。(柔和→活泼→柔和)2、再次欣赏音乐,区分段落。(1)动作是怎样变化的?音乐发生了什么变化?(欣赏)(2)音乐到底发生了什么变化?(出示~~~~~、∧∧∧∧∧、~~~~~)(3)乐曲中有个小秘密,是什么?(4)整首乐曲可以分几段?为什么?(5)小结:一首乐曲分成了3段,这种形式的乐曲称为三段体。刚才我们听到的乐曲,其中第3段音乐和第1段音乐是重复的、一样的,只有第2段是不一样的,这样形式的乐曲也叫三段体,它是三段体的一种特殊形式。二、完整欣赏,再次感受音乐三段体。三、分段欣赏,利用图片,帮助幼儿理解、感受音乐。(一)第一段:1、我们一段一段来听。2、这段音乐给你的感受与哪幅画给的感受是一样的,为什么? 3、能用什么动作表现呢?

  • 中班活动教案天空中的云

    中班活动教案天空中的云

    1、欣赏云的变化。2、发挥想象力。3、享受说儿歌的乐趣。4、锻炼大小肌肉的活动能力。活动准备:课件、魔术棒、纸笔、录音机、蓝卡纸、双面胶1、 提问引起幼儿的兴趣:(1)出去玩时,下面是什么?上面是什么?(2)天空中有什么?

  • 空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

上一页123...120121122123124125126127128129130131下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!