《乡愁》是九年级上册第一单元的课文,这是一首现代诗歌,对于诗歌的学习,九年级学生已经有了一定的基础,《语文新课程标准》明确指出“欣赏文学作品,能有自己的情感体验,初步领悟作品的内涵,从中获得对自然、社会、人生的有益启示;对作品中感人的情境和形象,能说出自己的体验。”我想通过这节课,进一步巩固和提高学生诗歌朗读能力;培养学生赏析诗歌意境的能力;掌握用具体意象表达情感的手法。下面我从教学目标、教学过程、教学设计理念三个方面进行说课。一、教学目标:1.知识目标:学会找出现代诗歌中的意象,并通过品读语言体会作者的思想感情。2.能力目标:能有感情地朗读诗歌,培养学生体会诗歌意境美的能力。3.情感目标:让学生体会作者由故乡之思上升到家国之思的情感,激发学生的爱国热情。4.教学重点:能有感情地朗读全诗,赏析诗歌的意境。5.教学难点:学习诗歌借助具体意象来表达情感的表现手法。
二、说学生和教法学生是学习的主体,“一个差的老师只会奉献,而好的老师则会教会学生发现真理”。初三学生已经具有了一定的阅读能力和语言感受力,并且已经学过了几个小说单元,已经能够了解小说的基本要素和小说的主要特点。同时,学生通过欣赏影视作品、阅读文本对本文节选故事的情节、人物形象,主题思想等内容也有个大体的把握。因此,组织本课教学时,教师如果只停留对课文情节、语言、动作、心理等逐条分析上,必然会把课文搞得支离破碎,而使学生毫无兴趣。所以,我设想抓住一点,深入挖掘,可能更激起学生自动探求的欲望,开启学生的思维,收到良好的教学效果。三、说教学目标1、《智取生辰纲》一文作为教学内容,我认为可以生成一下教学价值:培养学生分析人物形象的方法和能力;引导学生学习在矛盾冲突中刻画人物的方法;引导学生探究文章的主题等等。通过对学生和教材的分析和理解,我打算用一个课时来完成教学,教学目标为
本教材选自《幼儿园教育教学安排意见》小班内容,认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育使幼儿数学教育的重点内容。幼儿学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。发展它们的空间知觉能力和初步的空间想象力从而为小学学习几何形体做些准备。小班幼儿在他们充分获得对圆形的感知和确认后,再让他们认识三角形的特征,这对发展幼儿的观察力、比较能力和空间概念具有重要意义。认识三角形是在认识圆形的基础上进行的。这就为比较圆形和三角形奠定了知识基础,有利于幼儿对三角形的感知和掌握。本节课的知识点就是三角形的特征。基于以上对教材的分析,结合幼儿的认知特点,确定以下教学目标:1、教幼儿知道三角形的名称和主要特征,知道三角形由3条边、3个角。2、教幼儿把三角形和生活中常见的实物进行比较,能找出和三角形相似的物体。3、发展幼儿观察力、空间想象力,培养幼儿的动手操作能力。
认识单、双数是幼儿园大班幼儿上学期学习的数学内容之一,它来源于幼儿园课程中的科学领域。我发现幼儿在第一课时的学习后,对单、双数的掌握还存在个别差异,仍需要进一步的巩固、练习。我们知道,数学本身具有较强的逻辑性,在教学中容易让孩子感到枯燥、乏味,影响到幼儿学习的自主性和积极性。而《纲要》中明确指出:数学教育的目标是“能从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣。”在这一精神的指导下,我构思了本节数学活动。将一系列的游戏贯穿于第二课时的整个活动中,让幼儿在玩中学,在学中乐。以幼儿在第一课时的学习情况及布卢姆的《教育目标分类学》为依据,我从认知、能力、情感方面确立了本节课的目标:(1)幼儿通过游戏能较熟练地分辩10以内的单数、双数。(2)培养幼儿思维的灵活性,提高幼儿在数学活动中的分析(3)幼儿在游戏中体验参加数学活动的乐趣。
《纲要》指出:幼儿的发展是在与周围环境的相互作用中实现的,良好的教育环境对幼儿的身心发展具有积极的促进作用,应充分利用社区资源,拓展幼儿生活和学习的空间,借孩子感兴趣的事物,充分挖掘其潜在的、有利于孩子身心和谐发展的教育价值。超市是幼儿在日常生活中最熟悉的场所之一,超市里各种各样的物品吸引着幼儿。为此,我们选择了幼儿感兴趣的题材--“超市”开展主题活动。幼儿园数学是一门系统性、逻辑性很强的学科,有着自身的特点和规律,新《纲要》提出“数学教育必须要让幼儿能从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣;教师要引导幼儿对周围环境中数、量、形、时间和空间等现象产生兴趣,建构初步的数概念,并学习用简单的数学方法解决生活和游戏中某些简单的问题。”由此可见生活化、游戏化已经成为构建数学课程最基本的原则。在对教材和本班幼儿的学习情况有一定了解后,我制定出本次活动目标:1、通过购物,学习5以内的加减运算;2、初步了解加减法算式所表达的实际意义。
二、说学情学生是课堂的主体,教师应本着“因材施教”的理念结合学生的基本情况进行备课。九年级的学生已经有了较好的积累,基本词汇、常见修辞等等都有了较为自如的把握。对于诗歌这种文体,他们已接触过很多年。但由于对诗歌这种文体的情感把握还不够精准到位。此外,这一阶段的学生已经有了一定的写作和口语表达能力,我将在本文的教学过程中设置口语表达及写作的环节,学生可通过实践进一步强化这方面的能力。三、说教学目标因此,基于教材和学情,我从课程标准中“全面提高学生语文素养”的基本理念出发,设计了以下三个维度的教学目标:1.知识与能力:结合注释解释全文大意,并能初步体会是中蕴含的情感。2.过程与方法:通过有感情地朗读、独立思考、讨论、对文章中关键内容的探究等过程,体会文章语言的优美和表达的精妙。3.情感态度与价值观:懂得诗人重新投入生活的意愿及坚韧不拔的意志。
2、教学目标根据新课程理念,根据单元要求与课文教材特点,我确定以下三大目标:⑴知识目标:掌握重点字词,了解、把握课文内容、品味语言。⑵能力目标:学会小组自主合作探究,学会分析散文与语段、语言的方法。⑶情感目标:体会童年生活的情趣,关注自身的生活与成长,同时增加学生学习语文的兴趣,全面提高学生语文综合素养。3、教学重难点:本课是学生本学期的第一篇课文,也是本册、本单元的的第一篇课文。在上学期的语文学习的基础上,根据单元语课文特点,因此要把指导学生养成语文学习习惯与掌握学习方法作为本课教学重点。从理解课文方面看,难点在于让学生理解作者是怎样将美好的童年生活内容与情趣表现出来的,所以要将此点作为难点来突破。由此可见,两者相辅相成,互相渗透,而利用课件为学生提供形象生动的画面与针对性的探讨,创设情境加强对学生学习方法的指导与学生主体自主学习、合作探讨是突破本课教学重难点的关键。
一、说教材《赫尔墨斯和雕像者》选自人教版七年级上册第六单元《寓言四则》中的第一则寓言,本单元主要是一些有趣的故事,通过故事揭示道理。学情分析:学生在小学已经学过一些寓言故事的基础上,能够联系自己的生活体验积极思考和表达自己的观点。(根据新课标要求、寓言的特征和学生的实际情况)二、说教学目标知识与能力目标:了解寓言以及《伊索寓言》的知识;过程与方法目标:品味描写人物心理变化等细节描写,分析赫尔墨斯的性格特征;情感态度与价值观目标:正确理解寓意,树立正确的人生处事态度。三、说重难点(本单元要求:学习《伊索寓言》时重在让学生揣摩人物的语言、表情。)重点:揣摩人物的心理变化等细节描写。难点:多元理解寓意,培养学生发散思维。
幼儿园数学是一门系统性、逻辑性很强的学科,有着自身的特点和规律,密切联系幼儿的生活,结合幼儿生活实际和知识经验来设计数学活动。时间无直观形象是较为笼统的因此,运用了幼儿较熟悉的一日活动的作息时间,引导幼儿认识整点、半点,如: 8 00 入园, 3 30 离园 … 这样易引起幼儿的情绪体验,为其理解和接受。根据教材内容和幼儿的实际情况,制订出本次活动的教学为:1 .使幼儿认识时钟,能叫出名称,基本掌握钟面的主要结构。2 使幼儿知道时针、分针、以及它之间的运转关系,能正确识别整点、半点。3 培养幼儿的观察力和操作能力,使幼儿建立初步的时间概念。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.3.2节《对数的运算》。其核心是弄清楚对数的定义,掌握对数的运算性质,理解它的关键就是通过实例使学生认识对数式与指数式的关系,分析得出对数的概念及对数式与指数式的 互化,通过实例推导对数的运算性质。由于它还与后续很多内容,比如对数函数及其性质,这也是高考必考内容之一,所以在本学科有着很重要的地位。解决重点的关键是抓住对数的概念、并让学生掌握对数式与指数式的互化;通过实例推导对数的运算性质,让学生准确地运用对数运算性质进行运算,学会运用换底公式。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。1、理解对数的概念,能进行指数式与对数式的互化;2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。
学生已经学习了指数运算性质,有了这些知识作储备,教科书通过利用指数运算性质,推导对数的运算性质,再学习利用对数的运算性质化简求值。课程目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.数学学科素养1.数学抽象:对数的运算性质;2.逻辑推理:换底公式的推导;3.数学运算:对数运算性质的应用;4.数学建模:在熟悉的实际情景中,模仿学过的数学建模过程解决问题.重点:对数的运算性质,换底公式,对数恒等式及其应用;难点:正确使用对数的运算性质和换底公式.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么对数有哪些性质?如 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.