提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

大班科学教案:有趣的自由落体

  • 国旗下的讲话:勇担使命  争做有为青年

    国旗下的讲话:勇担使命 争做有为青年

    国旗下的讲话:勇担使命争做有为青年尊敬的老师、同学们:大家早上好!我是来自国际旅游文化学院08级旅游管理班的xxx。今日今时,谨代表全院同学在此做红旗的下的讲话,我深感荣幸与自豪。今天,我讲话的题目是“勇担使命争做有为青年”。同学们,都说我们是社会主义事业的建设者和接班人,是祖国和名族的希望和未来。今天,我们齐聚校园,听风声雨声读书声,谈家事国事天下事,我们踌躇满志、我们雄姿英发、我们风华正茂!闻晨钟而效祖狄早起攻读,秉灯台以学车胤静夜深思,为他日学成报效家国,任青春挥洒而无悔无怨。回顾历史,在学校学院的英明的正确的领导下,在莘莘学子孜孜不倦的努力下,我们学校、学院取得了可观的成绩,放眼望去,硕果累累。立身于这个巍巍照壁山下、密密香樟林中的师大校园,我们拥有丰富的校园生活,我们随处可见希望的灯塔。展望未来,我们仍然会在学校学院的领导下健步向前,再创辉煌。以史为鉴,我们将牢记经验教训,继续传承、发扬优良文化,继往开来。

  • 关于做一个有理想道德的人国旗下讲话

    关于做一个有理想道德的人国旗下讲话

    做一个有道德、有理想的人尊敬的各位领导、老师们、同学们:大家上午好!今天我要讲话的题目是《做一个有道德、有理想的人》。近日来,团委开展了“20**年度十佳学生”的评选,经过全校同学的投票,从15名候选人中最终评选出了“20**年度十佳学生”。他们中,有言语不凡、hold住全场的孙乐君,有待人谦和有礼、乐于助人的陈雨帆,有不断超越、追求卓越的郑熙,有温文尔雅、谦俭恭和的黄皓,还有狭路相逢、敢于亮剑的纵横辩论社员们…十佳的评选,不仅仅是为了表彰他们,分享他们的学习生活经验,体会那份真实与感动,更是为了激励更多的一中学子们奋发向上,超越梦想。在此,我代表学生会向全校同学发出倡议,我们要向十佳学生学习,做一个有道德、有理想的人。我们要做一个有道德的人。中华民族历来有崇德重德,尚德倡德的传统,常言道:“人无德不立,国无德不兴。”,强调的就是道德对于个人修身立业和国家长治久安有重要作用。怎样做一个有道德的人?我个人认为,首先要做到“勿以善小而不为,勿以恶小而为之”。

  • XX年有关于五一劳动节的国旗下讲话稿

    XX年有关于五一劳动节的国旗下讲话稿

    老师、同学们:早上好!今天,我怀着激动的心情站在这鲜艳的五星红旗下讲话,感到无比的高兴和自豪。时间如流水,三天的假期在火热蓬勃的"五一"劳动节中一晃而过。我们年年都急切地盼望"五一"劳动节的到来,以各种各样的方式来庆祝它。那么,同学们知道"五一"劳动节是怎样诞生的吗?19世纪80年代,美国和欧洲的许多国家,资本家不断采取增加劳动时间和劳动强度的办法来残酷地剥削工人。工人们每天要劳动长达18个小时,但工资却很低。沉重的压迫激起了工人们巨大的愤怒。就在1886年的5月1日,为反对资本家的剥削和压迫,争取工人的合法权利,在革命导师恩格斯的指导下,许多国家的工人,不怕警察的刺刀威胁,举行了历史上第一次国际性的"五一"大示威。所以就诞生了今天的"五一"国际劳动节。

  • XX年1月国旗下讲话:做一个具有创新能力的人

    XX年1月国旗下讲话:做一个具有创新能力的人

    我们中华民族是一个聪明,勤劳的民族,我们的祖先曾经为人类提供了开启世界文明之门的"四大发明",而在近百年来科学技术史上,却很少有中国人的名字。形成这种现状的原因是什么呢?我想,这跟我们民族的创新能力下降有很大的关系。科学的本质是创新,那么创新的本质又是什么呢?我认为,创新的本质是进取,是不做复制者,单纯的模仿不是创新,令人生厌的重复也只会造成原创力的降低。创新不容易但并不神秘,可以说,任何人都可以创新。当然知识越丰富的,他创新的机会就越多。可能有些同学会认为创新只是科学家才能做的事情,其实不是的。下面我就给大家讲一个真实的故事。美国有个叫李小曼的画家,他平时做事总是丢三落四,绘画时也不例外,常常是刚刚找到铅笔,又望了橡皮放在哪儿了。

  • 《祖国奋进我成长-做有责任感的人》说课稿

    《祖国奋进我成长-做有责任感的人》说课稿

    通过观看祖国变化的图片,了解祖国之所以有今天伟大的成就是因为有责任心的中国人凝聚在一起的爱国力量,是每个有责任心的人在自己的岗位上尽心尽力,出色的完成自己的任务。活动一:学生观看表现祖国各行各业奋进的演示文稿。活动二:观看建国六十周年国庆阅兵仪式的片断。活动三:学生代表二人交流:感受到的祖国的变化。活动四:学生交流:自己的感受。(二)理解责任的含义,认识不负责任的危害活动一:知道责任的含义:责任:就是分内应做的事情。也就是承担应当承担的任务,完成应当完成的使命,做好应当做好的工作。认真负责也是爱祖国的表现。责任感就是自觉地把分内的事做好的心情。活动二:通过观看我国航天领域的伟大成就,体验宇航员奋力拼搏,促进航天技术飞速发展的成功喜悦。活动三:通过故事《一个小数点酿成的悲剧》领悟出责任心的重要。了解不负责任的危害。活动四:学生讲出自己身边不负责任的事例。活动五:学生分享自己收获和感受。

  • 人教版高中历史必修2战后资本主义世界经济体系的形成说课稿3篇

    人教版高中历史必修2战后资本主义世界经济体系的形成说课稿3篇

    1、《战后资本主义世界经济体系的形成》是人教版高中历史必修Ⅱ第八单元第22课,学时为1课时。《历史必修Ⅱ》一书用古今贯通、中外关联的八个专题来着重反映人类社会经济和社会生活领域发展进程中的重要史实。从第一单元勾勒“古代中国经济的基本结构与特点”再到第八单元“世界经济的全球化趋势”,以历史唯物主义观点清晰阐明经济全球化是世界生产力发展的要求和结果,是不以人的意志为转移的历史必然趋势。第八单元的标题是《世界经济的全球化趋势》,作为最后一单元,从内容上讲,有强烈的时代感和现实意义,是全书内容的总结与升华展望。提起“全球化”这个十年前才首次出现在美国《商业周刊》的新名词,如今却是地球人都知道了。然而究竟什么是全球化?作为一历史现象,全球化有其自身内部严密完整的体系,其中核心之一便是制度、规则的全球化,而这正是本课内容的着力点。

  • 对公共卫生体系建设情况的调研报告

    对公共卫生体系建设情况的调研报告

    1、机构设置情况:  经过多年的建设,全县目前已形成了设施和功能相对齐全的县乡村三级公共卫生工作网络和服务体系,拥有一支人员充备的卫生专业技术和卫生监督执法队伍。全县共有各级各类医疗卫生机构238个,其中县级综合医院1所,中医院1所,卫生防疫站1所、妇幼保健所1所,乡(镇)卫生院16所,培训中心、红会门诊部、预防保健站各1所,村医疗站168家,个体及社会办医疗机构47家。我县未成立卫生监督所,县卫生防疫站兼疾病控制、卫生监督、信息报告、突发公共卫生事件处置等职能,具体卫生监督执法业务由卫生防疫站监督一科、二科承担,主要担负全县食品卫生、公共场所卫生、化妆品卫生、学校卫生、职业卫生、生活饮用水卫生、放射卫生、消毒卫生、传染病防治执法监督管理工作。

  • 参加巡察巡视工作的经验总结(心得体会)

    参加巡察巡视工作的经验总结(心得体会)

    一、万变不离宗——要充分依靠运用《巡视工作方案》《巡视工作方案》是巡视工作的总纲,是指导做好巡视工作的“教科书”,应当始终把《巡视工作方案》摆在突出重要位置,学习好、领悟透、践行实。一是巡前学。要在巡视准备阶段,组织巡视组全体成员认真研读、反复思考,对巡视工作形成宏观整体把握。要对照“四个落实”的内容,逐条组织研讨交流,对需要发现的问题及表现形式形成初步预判。要对巡视工作基本程序、步骤、方法有充分认识理解和精准把握,以便在现场巡视阶段更加精准运用。二是巡中悟。“四个落实”中有的内容只有结合实际工作才能真正领悟其深层含义。因此,进入现场巡视阶段,要结合具体工作,经常翻阅、领悟其中内涵,精准发现巡视重点问题,确保巡视方向不偏。要始终保持“政治巡视”的站位,突出巡视工作的政治属性,善于把发现的具体问题上升到“讲政治”的层面理解把握,避免将政治巡视误解为工作督导检查。三是巡后核。现场巡视结束后,进入巡视报告的撰写修改和问题底稿的审核阶段,更要经常对照《巡视工作方案》校准调整。要对照“四个落实”,对巡视工作报告进行修改完善,看问题定性是否准确、依据是否合规;看中心是否偏移、特点是否鲜明;看重点是否突出、结构是否合理。

  • 冬季请加强体育锻炼的国旗下讲话稿

    冬季请加强体育锻炼的国旗下讲话稿

    位同学各位老师:大家早上好!今天我国旗下讲话的题目是《冬季,请加强体育锻炼》!冬季的到来,给北方的天气增加了几分寒意,这个季节,没有了夏日的骄阳,正是锻炼身体的好时机。参加冬季体育活动,不仅能锻炼身体,增强体质,而且还能锻炼不怕严寒的坚强意志,提高身体的抗寒能力,增强抵抗各种疾病的能力。冬季体育锻炼,由于肌肉不断收缩,呼吸加快,新陈代谢旺盛,身体产生的热量增加。同时还增强了大脑皮层的兴奋性,使体温调节中枢灵敏、准确地调节体温,提高人们的御寒能力。所以,坚持冬季锻炼的人,抗寒能力比一般人增强8-10倍。冬季体育锻炼,大都在室外迸行,不断受到冷空气的刺激,人体造血机能发生明显变化,血液中的红细胞、白细胞、血红蛋白以及抵抗疾病的抗体增多,身体对疾病的抵抗能力增强,俗话说“冬天动一动,少闹一场病;冬天懒一懒,多喝药一碗”就是这个道理。冬季体育锻炼,接受阳光的照射,弥补阳光照射的不足。阳光中的紫外线不但能杀死人体皮肤、衣服上的病毒和病菌,对人体有消毒作用。还能促进身体对钙、磷的吸收作用,有助于骨骼的生长发育。尤其对正在长身体的青少年来说,多参加户外锻炼更为重要。

  • 北师大版初中七年级数学下册用关系式表示的变量间关系说课稿2篇

    北师大版初中七年级数学下册用关系式表示的变量间关系说课稿2篇

    一.说教材我今天说课的内容是义务教育课程标准北师大版七年级下册第四单元第二节的《用关系式表示的变量间关系》。在上节课的学习中学生已通过分析表格中的数据,感受到变量之间的相依关系,并用自己的语言加以描述,初步具有了有条理的思考和表达的能力,为本节的深入学习奠定了基础。二.说教学目标本节课根据新的教学理念和学生需要掌握的知识,确立本节课的三种教学目标:知识与能力目标:根据具体情况,能用适当的函数表示方法刻画简单实际问题中变量之间的关系,能确定简单实际问题中函数自变量的取值范围,并会求函数值。过程与方法目标:经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。情感态度与价值观目标:通过研究,学习培养抽象思维能力和概括能力,通过对自变量和因变量关系的表达,培养数学建模能力,增强应用意识。

  • 高教版中职数学基础模块下册:7.1《平面向量的概念及线性运算》教学设计

    高教版中职数学基础模块下册:7.1《平面向量的概念及线性运算》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10

  • 高教版中职数学基础模块下册:7.1《平面向量的概念及线性运算》教学设计

    高教版中职数学基础模块下册:7.1《平面向量的概念及线性运算》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10

  • 空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

上一页123...135136137138139140141142143144145146下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。