一、说教材分析《采松果》一课讲的主要内容是:两位数加、减一位数(不进位、不退位),是在学生熟练掌握20以内加、减法以及整十数加、减整十数的基础上安排的。教材内容分为两部分:一部分是教学两位数加一位数,另一部分是教学两位数减一位数。这两部分内容呈现在同一情境图——“采松果”中,创设了一个充满童趣的生活故事场景,引发学生在读懂图意的基础上,发现其中的数学信息,并能利用这些数学信息提出数学问题。二、说学情分析在学习本节课内容之前,学生已认识了100以内的数,掌握了20以内的加减法以及整十数加、减整十数的计算方法,对于加减法的意义有了一个基本的了解。另外经过上半学期的目标性训练,学生已具有了初步的合作交流意识和提出问题、解决问题的能力,能够有目的地进行探索性学习。但是,对于单纯的口算学习学生的学习兴趣并不是很浓,因此,激发学生的学习兴趣,使学生想学、乐学便显得尤为重要。
二、说学情学生有了前面学习的基础,课堂上尽可能放手让学生自主探索出两位数减两位数(不退位)的计算方法。关注学生竖式的书写。三、教学目标:1、学生在具体情境下,进一步体会加减法的意义。2、探索并掌握两位数减两位数(不退位)的计算方法3、初步学会应用加减法解决生活中的简单问题,感受加减法与日常生活的密切联系教学重点:本节课的重点是理解笔算两位数不退位减的算理,能正确用竖式计算。教学难点:理解两位数减两位数不退位减法的算理。三、精选教法。针对本节课抽象性较强,算理比较复杂,而一年级学生以形象思维为主,抽象思维相对较弱的特点,教学时应采用多种方法来激发学生兴趣,引导探究新知。教师主要采用:情境教学法、尝试教学法、讲授法、直观演示法、练习法等,并使这些方法相互交融,融为一体。
一、说教材(一)说教学内容我说课的内容是北师大版义务教育课程第八册第四单元“观察物体”一节,是一节新授课。(二)教材简析观察物体是在学生学习并掌握了“上下、前后、左右”位置关系的基础上安排的。通过这部分内容的教学,不但可以使学生能通过由低到高来观察物体的活动,从而体会到不同的位置看到的情景不一样,而且能通过由远到近看景物,能体会到看到的范围越来越小。(三)说教材重点和难点。教学重点:想象、判断观察到画面发生的相应变化,发展空间观念。教学难点:想象、判断观察到画面发生的相应变化,发展空间观念。二、说教学目标依照《新课程标准》的要求,结合教材和学生的特点,从知识、能力、情感态度三方面制定以下教学目标:1、通过引导学生参与各种形式的数学活动,使他们体验从不同的角度观察同一物体所看到的图形可能并不完全相同,领悟观察物体的方法,培养和发展学生的空间观念。2、培养学生运用所学知识解决实际问题的能力、与人交流的能力以及观察能力。
二、教学目标的确立教学目标根据学生的年龄特点、教学内容,我确定了如下的教学目标:1.结合解决问题的过程,初步理解同分母分数加减法算理,并能正确计算。2.能用同分母分数的加减运算,解决一些简单的实际问题。3.在动手操作中,激发学生学习兴趣,培养学生合作意识和勇于探索、自主学习的精神。三、教材处理本节课我充分尊重教材,将整节课至于生动的情境中,以观察思考、动手实践、合作交流为主要形式,使学生完成对知识的建构,同时感知数学与生活的联系。根据教学目标及学生的认识规律我确定了:教学重点:理解并掌握同分母分数加减法的计算方法,并能通过运算解决一些简单的实际问题。教学难点:解决“1减几分之几”的问题。四、教法学法教学中我采取“创设情境,自主探索,合作交流”开放式探究模式的教法,引导学生想学、乐学。创造主动参与,积极探究的氛围,让学生以动手操作,动眼观察、动脑思考、同桌互学,小组研讨、集体评论的学法,让学生全程参与到每个教学环节中来。
一、说教材:1、教学内容:北师大版小学数学三年级下册第28-29页。2、教材简析:这部分知识的教学是建立在上节课学习了两位数乘两位数的算法,以及对进位的乘法也有一定经验的基础上进行的,目的是使学生进一步掌握两位数乘两位数(进位)的算法。本节课主要通过“电影院”这一学生熟悉的生活情境,在引导学生观察的基础上,培养学生的估算意识和估算能力;让学生在具体的教学活动中,拓展学生的思维,体验算法策略的多样化,进一步掌握两位数乘两位数(有进位)的算法,并能解决一些简单的实际问题。二、、教学目标:▲知识与技能:(1)结合“电影院”的具体情境,进一步掌握两位数乘两位数(有进位)的计算方法。(2)对两位数乘两位数(有进位)能进行估算和计算。(3)能解决一些简单实际问题。
《集邮》是北师大版小学三年级下册第一单元除法里的一节课,主要教学内容是三位数除以一位数,被除数的最高位比除数小,商是两位数的除法。教材安排了估算和笔算两种方法,估算是让学生算出大概的结果,它的最终目的是为学会笔算服务的,如果用于检验笔算结果的准确性及试商等。由于学生已经学习了一位数除两位数(首位不够除)的笔算计算方法,再加上大量的练习,因此一些基本的计算过程及格式学生理解和掌握起来应该不难,关键还是要把握住“当被除数的最高位不够商一,用除数去除被除数的前两位”这个知识点。二、说学情教材呈现了估算和笔算的过程,注重培养学生的估算意识,帮助学生体会估算、笔算不同的特点。本节课有一个新的知识点,即当被除数第一位不够除的时候就用前两位去除。相对来说,这些算式的数字较大,学生容易算错,教材中提出了用乘法验算除法的方法,以此培养学生验算的习惯。
为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:五、说教法学法我依据“教学有法,教无定法,贵在得法”,同时为了达到既定的教学目标,突出重点,突破难点。本节课我采用的教学方法主要有创设情境法,引导启发法,同时辅以讲练结合,借助现代化的教学手段,以达到良好的教学效果。根据新课标的要求,同时又设计了与教法相适应的学法,我将“学习的主动权还给学生”,通过自主探索,合作交流等方式自主学习,真正让数学教学的课堂变成学生的课堂。六、说教学准备为了更好的达成本节课的课堂教学目标,老师学生需要做如下的教学准备:1、教具:根据教材内容自制的多媒体课件等教具。2、学具:学生以小组为单位准备表格等学具。
2.应用意识方面,解决问题能力较差。一方面是符号意识、应用意识需要发展,从现实问题抽象出数学问题的能力和主动用数学思想分析现实问题的习惯。二是分析问题、解决问题的策略缺乏、灵活使用的能力不足(几何直观、模型思想、归纳、类比、逆向思考等方法)。五、教法、学法教法:利用谈话法,引导学生思考、探究的过程,实现教师主导下的学生的自主建构。利用讲解法,在探究学习的基础上,教师和学生共同对重点、难点进行梳理,引导学生建立清晰、系统的知识结构。利用练习法,巩固知识,发展学生的运算能力、符合意识、应用意识。学法:自主探究,有利于形成主动思考的习惯,思维能力获得提高。成功的探索使其获得理智感,有益于学习兴趣的培养。合作学习,交流比较,质疑反思的经验有利于学生创新能力的提升。合作交流同时也促进个性、社会性的发展。
(三)、巩固反馈师:同学们的表现真的令我出乎意料,你们太聪明了,今天我就带大家去数学王国去参观,敢去吗?如果你们能闯关成功就可以免费进入王国的游戏宫,有信心吗?(激励学生,让同学们很快进入巩固练习这个环节中来)第一关:逛同学恩喜爱的食品店(这一关的设计采用抢答的方式进行,更进一步激发学生的学习兴趣,而且巩固了本课重点——计算规律。)第二关:我们来到了你们的妈妈喜欢服装店(这一关先让学生独立尝试,并抽生板演,全班订正,注意强调答语的写法。)第三关:现在我们来到了养鸡场。(这一关仍然采用抢答的方式进行,这道题目主要考察同学们对第二条规律的掌握情况)第四关:进入数学王国继续玩抢答游戏和猜一猜活动(这个环节让学生体会到学习的乐趣)
《包装》是北师大版四年级下册第三单元第四课时的内容。本课主要让学生探索小数乘小数的竖式计算方法,是在学生掌握小数点位置的移动引起小数大小变化的规律以及积的小数位数与两个乘数的小数位数之间关系的基础上教学的。小数乘法的竖式计算是本单元的重点,是学生正确进行小数乘法计算的关键。课本首先安排了三个问题:第一个问题是结合解决实际问题的过程,会选择适当方法估计运算结果,发展数感,并通过交流进一步理解小数乘法与整数乘法之间相互转化的条件;第二个问题也是结合解决实际问题的过程,掌握小数乘法转化为整数乘法进行运算的一般步骤,从而归纳总结小数乘法的竖式计算方法;第三个问题是经历独立计算和交流小数乘法的过程,体验算法的多样化,发展运算能力。其次安排了6道练习题,目的是为了进一步发展数感,巩固小数乘法的竖式计算方法,体会小数乘法的竖式计算在生活中的应用。
3、变换角度,深入思考第三幅情境图隐含着多样的等量关系,也正是引发学生数学思考的最佳情境。根据学生认识的深入程度,可适当让学生体会到等式的“值等”和“意等”,并放手让学生探究,根据不同的认识找到不同的等量关系,列出等量关系不同的同解方程。在教学中,先引导孩子发现情境中的基本相等关系:2瓶水的水量+一杯水的水量=一壶水的水量,并且列出等式2z+200=2000,在此基础上,再引导孩子发现其他的等量关系。在这一过程中,充分激发孩子探求知识的欲望,调动孩子思考的主动性和灵活性,从而找到多样化的等量关系,并进一步提高孩子解决数学问题的能力。4、建立概念,判断巩固在前面教学的基础上总结、抽象出方程的含义。通过三道例题的简洁数学式子表达,让小组合作寻找他们的共同特点,从而建立方程的概念。“含有未知数”与“等式”是方程概念的两点最重要的内涵。并通过“练一练”让学生直接找出方程。
知识与能力目标是:理解反比例的意义,能判断两个量是不是成反比例过程与方法目标是:通过讨论、探究、观察等活动,提高分析问题解决问题人的能力情感态度价值观目标是:培养学生对学习数学的兴趣,感知数学与生活的联系。此外,根据我对教材的解读,我将本节课的教学重点确定为:理解反比例的意义教学难点确定为:判断两个量是不是成反比例二、教法与学法新课标指出:学生是学习的主体,教师是学习的组织者、引导者和合作者,因此首先我采用情境教学法,通过创设情境,激发学生对学习数学的兴趣,;再通过师生互动,探究式教学,为学生创设一个宽松的数学学习环境,相对教师的教法学生采用自主探索,研讨发现的学习方法,让学生成为学习的主人,发挥学生学习数学的积极性和主动性,最后利用练习法:通过适当的练习,巩固所学的知识,解决生活中简单的实际问题
一、教材:《画一画》这一内容是在学生学习了《变化的量》和《正比例》这两节内容以后安排的,学生已经结合大量的生活情境认识了生活中存在的许多相互依赖的变量,而且体会了这些变量之间的关系,认识了正比例及其意义,能初步判断两个相关联的两是不是成正比例,感受了正比例在生活中的应用,学生对正比例的认识有了一定的基础。教材安排这一内容,一是让学生进一步认识正比例,以及正比例中两个相关联的量之间的关系;二是通过让学生在方格纸上描出成正比例的量所对应的点并能在图中根据一个变量的值估计它所对应的变量的值,从而认识正比例图像的特点。主要意图是引导学生运用已有的知识,用图的形式去直观表示两个成正比例的量的变化关系,鼓励学生发现当两个变量成正比例关系时,所绘成的图像是一条直线,在此基础上,鼓励学生利用图,进行一些估计,解决一些问题,为以后进一步学习正比例函数打下一定的基础。
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
教学目标:1.能利用三角函数概念推导出特殊角的三角函数值.2.在探索特殊角的三角函数值的过程中体会数形结合思想.教学重点:特殊角30°、60°、45°的三角函数值.教学难点:灵活应用特殊角的三角函数值进行计算.☆ 预习导航 ☆一、链接:1.如图,用小写字母表示下列三角函数:sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三边长有什么特殊的数量关系?如果∠A=45°,那么三边长有什么特殊的数量关系?二、导读:仔细阅读课本内容后完成下面填空:
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。