2、让幼儿学习按数匹配实物。3、启发幼儿用语言讲述操作过程。让幼儿学习不受物体排列形式的影响,正确感知7以内的数量。引导幼儿讨论数量相等的不同物体可不可以放在一起?
三、准备: 1、幼儿人手一张记录卡; 家里的数字: 2、课件制作:我的家 课件一:家里的各种物品(鞋、桌子、椅子、茶杯、玩具、电视机等物品)。 4 6 5 3 2 1 课件二:厨房、客厅、卧室。 三、过程: 观看录像一)、认识数字,理解6以内各数字的实际意义: 1、幼儿交流记录卡,说说在家中发现了哪些数字? A、直观的数字(数序):如、电话上的数字、钟上的数字、电器上的数字;
2、培养幼儿用语言讲述操作结果的习惯。活动准备: 图形拼图一幅,标记卡、数字卡若干,各种图形若干,数字印章,印泥、操作用纸若干。
一、教材分析? 本节课是三年级第六单元第一节的教学内容,主要讲了明白什么是分数,初步理解分数的意义,能正确地认、读、写简单的的分数等知识。这部分内容是在学生们掌握了一些整数知识的基础上来学习的,它为进一步学习比较分数的大小和分数的加减运算有重要的铺垫作用。? 三年级的学生活泼好动、思维敏捷、善于学习,爱好展示,善于发言,课堂根据学生的年龄特点设计教学活动。 二、教学目标(针对新课标的要求与教材内容,我制定了如下的教学目标)????? 1、让学生理解分数的意义,能正确地认、读、写简单的分数。????? 2、能熟练地根据图表表示分数,根据分数涂写表格。? 3、培养学生的思维能力和运用数学知识解决实际问题的能力,从而培养学生学习数学的兴趣。????? 三、教学重点难点 对教学目标和教材内容,我确定了教学重点和难点)???正确地认、读、写简单的分数以及初步认识分数的含义是重点。???合作探究理解分数的意义是难点。
3 比一比,谁算得快。38+76+24 (88+45)+124 、拓展560+(140+70)=(□ + □ )+ □ (64+□)+27=64+(□+27)71+68+ □ 你认为 □ 里填什么数会使你的计算简便?怎样简便计算?5、游戏:找朋友。(1) 哪两个同学手上的树叶的和是100?(2) 同桌一个同学说出一个数,另一个同学马上说出一个与它的和是整百、整千的数。【设计意图 :几个层次的练习,为学生提供了具有价值的学习内容,开放学生的思维空间,提高思维含量,学生在观察辨析中比较,在思考对比中升华,促进学生灵活地理解和掌握知识。】(五)、全课总结,引申知识今天这节课我们学习了什么知识?你是怎样获得这些知识的?那么在减法、乘法、除法中,有没有这样的规律呢?课后大家可以继续研究。【及时总结、巩固所学知识,重视学法总结。使学生在自己的整理总结中再次巩固了本节课的重难点。同时为学生以后的学习作好了铺垫】
活动目的:通过两个图案设计,一个是让学生独立思考,借助于已经学习的用尺规作线段和角来完成,对本节课的知识进一步巩固应用;另一个是让学生根据作图步骤借助于尺规完成图案,进一步培养学生几何语言表达能力,并积累尺规作图的活动经验。活动注意事项:根据课堂时间安排,可灵活进行处理,既可以作为本节课的实际应用,也可以作为课下的联系拓广,从而使得不同层次的学生都学到有价值的数学。四、 教学设计反思1.利用现实情景引入新课,既能体现数学知识与客观世界的良好结合,又能唤起学生的求知欲望和探求意识。而在了解基础知识以后,将其进行一定的升华,也能使学生明白学以致用的道理、体会知识的渐进发展过程,增强思维能力的培养。同时,在整个探究过程中,怎样团结协作、如何共同寻找解题的突破口,也是学生逐步提高的一个途径。
五、说反思:通过本节课的学习,我预期学生达到如下的效果:1、培养学生的全面地思考问题和观察、分析及推理能力。通过摆数字卡片、握手、服装搭配等活动,培养学生多渠道获取信息的能力,从中培养学生的全面地思考问题和观察、分析及推理等实践能力。2、培养师生的合作意识和合作能力。通过师生、生生的交流和交往,开展各种灵活多样的研究活动,有利于提高学生的交际能力和表达能力。有利于培养学生的合作意识和合作能力。3、激励参与,培养学生的主动性。在摆数字、握一握、搭配服装的时候,几个学生一个小组围在一起,小声讨论研究。每个题目都先由学生分析、讨论,教师不失时机地追问,鼓励学生积极参与,激发学生的创新思维。鼓励学生充分表现自己,增强自信,发挥创造性思维,培养初步培养有序地、全面地思考问题的能力和初步的观察、分析、及推理能力,激发了学生的参与意识。
一、说教材(一)说教学内容:人教版小学数学三年级上册第九单元数学广角第一课时简单的排列。这节内容是在学生已经接触了一点排列与组合知识的基础上继续让学生通过观察、猜测、实验等活动找出事物的排列数和组合数。《标准》中指出“重要的数学概念与数学思想宜逐步深入”。所以,这节内容重在向学生渗透数学思想,并逐步培养学生有顺序地、全面的思考问题的意识。(二)说教学目标:1、让学生经历两种不同的事物进行简单的搭配的过程,学习有顺序有条理,由具体到抽象地进行思考,探索出共有多少种搭配方法的数量关系。2、让学生在探索过程中体会解决问题策略的多样性,发展思维能力,培养符号感。3、让学生在解决问题的过程中体会许多现实生活中的问题可以用数学方法去解决,从而增强对数学学习的兴趣。
《排队问题》是人教版教材第七册《数学广角》中的内容,是继“烙饼问题”、“沏茶问题”之后再一次向学生渗透运用运筹思想解决生活实际问题的新增内容。排队论是关于随机服务系统的理论,其中的一项研究是怎样使服务对象的等候时间最少的问题。这部分知识对学生来说,比较抽象,难以理解的。但由于学生在日常生活中都有过排队等候的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过演绎、例举、观察、分析、优化,形象地帮助学生理解什么是“等候时间的总和”,以及归纳出按怎样的顺序安排才会使等候时间的总和最少。本节课采用“阅读-讨论式教学法”。通过让学生阅读教材中的主题图和相关文字,初步感知生活中的数学现象,通过讨论,合作学习,探索出各种排队等候的方案,在通过计算,对每种方案进行选择,从而找到最优化方法,在此过程中,让学生体会到运筹思想在解决生活中实际问题的作用。
课堂教学设计说明前一节课学生通过推导,已初步理解和掌握了乘法分配律,但要使学生切实理解乘法分配律,必须经过反复地练习,本节课就是解决如何应用乘法分配律使计算简便,在应用的过程中,进一步加深对乘法分配律的理解.新课分为两部分.第一部分通过师生对出题,激发学生积极性,为应用乘法分配律做铺垫.第二部分是教学例6,用简便方法计算,通过老师的启发,学生经过观察,讨论找出题目的特点,总结出简便运算的方法.本节课的练习分两个层次.一个层次是讲中练,边讲边练,并在练习中不断变换题目形式,提高学生灵活运用运算定律的能力.第二个层次是总结性的综合练习.通过师生对出题使学生深刻理解乘法分配律的内涵,抓住关键,进行简算;同时对不符合乘法分配律的题目,经过讨论,修正过来,使学生对运算规律理解得更透彻.
3、个性展示。《课程标准》把发展学生的符号感作为义务教育阶段的一个重要的数学学习内容。于是在上一个环节中,我继续让学生举例,通过大量的实例,使学生发现这样的例子有很多,总也举不完,再用特定的数已经满足不了这种需要,造成了学生的认知冲突。“怎样表示出所有的例子呢?”启发学生探究新的表达方式,激起学生强烈的探究欲望。紧接着组织学生先在小组里说说自己是怎么想到这样的表达方式的,然后把用不同的符号或字母表示的式子写到黑板上,并追问“为什么可以这样表示?每一个符号或字母表示什么数?”待全部汇报完后,再把这些个性化的符号、字母表示的加法交换律和用具体的数以及语言文字表示的进行比较,让学生谈谈有什么感受?这样,就使学生从具体的情境中抽象出变化规律,发展了学生的符号感,同时使学生感受到用字母表示的优越性,还使学生获得了成功的体验。
4、这样的描述太长又难记,让学生想想加法交换律,能用什么简便的方法来表示他们的发现,并自己尝试写一下。提示:用自己喜欢的图形、字母或符号来表示这一规律。板书:(a+b)+c=a+(b+c) 这就是我们今天所学的一个运算定律 (板书:加法结合律)。(三)巩固练习我设计了三个层次的练习,而且形式多样,内容丰富,使全体同学都参与到有趣的数学学习中,又复习巩固了全课的内容。前两题是基础巩固题,是针对加法结合律的定义设计的填空和判断题。三四题是将加法交换律也放入了习题中,通过连线,选择,让学生能够区分加法结合律和加法交换律。五六题则是在刚才的习题上,提出了更高的要求,第五题是让学生自己运用简便方法计算三个数的相加。第六题则是开放题,在一个算式中,给学生两个数,一个空,让学生自己想出一个适合数来使计算简便一些。这样,我就把主动权再次交给学生,充分体现他们的主体性。
1、教材地位:《加法运算定律的应用》这节内容是在前面学习了加法交换律及加法结合律的基础上进行教学的。它是加法两个运算定律在实际生活的应用,同时也为后面进行简便计算打下一定的基础。教材中改变了改变了以往简便计算以介绍算法技巧为主的倾向,着力引导学生将简便计算应用于解决现实生活中的实际问题,让学生借助于解决实际问题,进一步体会和认识运算定律。同时注意解决问题策略的多样化。这对发展学生思维的灵活性,提高学生分析问题、解决问题的能力,都有一定的促进作用。它是在例2已经计算了李叔叔前3天所行路程和的基础上,给出李叔叔后四天的行程计划,让学生求4天计划行程的和。教材中设计的四个加数,其中两个可以凑成整百数,另两个可以凑成整十数,旨在让学生将前面所学的两条加法运算定律,综合运用到解决实际问题的计算中。
一、创设情境,引入新课。课开始,首先通过谈话问学生“你们喜欢玩游戏吗?”随后呈现例题的情境图,让学生在观察中清楚的知道袋中有4个红球和2个红球。然后教师揭示摸球游戏的规则:每次任意摸一个球,摸好后放回袋中,一共摸30次。摸到红球的次数多算小明赢;摸到黄球的次数多算小玲赢。接着让学生猜一猜谁赢得可能性大一些。预设学生都会猜是小明赢得可能性大一些。然后组织学生在小组里进行摸球实验,并把摸的结果记录在书本例题的第一个记录表中,验证刚才的猜想。在学生操作完之后,让学生明确小明赢得可能性大一些。接着引导学生产生质疑:“这样的游戏公平吗?为什么?”引导学生小结:口袋中红球的个数比较多,所以每次任意摸一个球,摸到红球的可能性要大,最后小明赢得可能性也就相应地要大一些,这样摸球的游戏规则是不公平的。在此基础上揭示课题并板书:游戏规则的公平性。
探究二:100以内数的大小比较。1、 (媒体出示课本第39页例8鸡蛋图。)师:看这鸡蛋图,谁知道哪边的鸡蛋多一些?你是怎么比较的?(学生可能回答:(1)根据鸡蛋图比较。(2)根据数的顺序比较。(3)根据数的组成比较。)(根据学生回答,点击○媒体出示答案。)2、 师:刚才我们看着鸡蛋图比较了两个数的大小,那如果没有图,我们会不会直接比较两个数的大小呢?我们请计数器来帮忙,谁来拨?(媒体出示计数器)师:谁能来说说每个数位上数的意义,再进行比较,说说比较的方法。(学生已经有了比较20以内数的大小的基础,教师引导学生在此基础上说出:28是由2个十和8个一组成,26是2个十和6个一组成,所以28>26;或者根据数数时28在26后面,所以28>26。)(点击表示28的计算器图,媒体出示28是由2个十和8个一组成;点击表示26的计算器图,媒体出示:26是由2个十和6个一组成;点击“26是由2个十和6个一组成”,媒体出示:28>26。)(师板书:28>26)
1、找一找出示七巧板图,设疑:图中你能找出几个梯形?这个梯子最多能达到多高的高度?(见课件)2、拼一拼:①利用两个完全一样的梯形,拼出一种你熟悉的图形。②利用多种梯形图片,摆出一种最喜欢的图案。创设问题情境,深化思维层次,构建知识体系1、通过活动,培养学生创新意识和审美情趣,充分体现“玩中学,学中玩”的新课程理念。2、教会学生在活动中运用新知、拓展思维、加深认识,增强了学生的参与意识和主体意识。3、在拼摆中渗透转化思想,为梯形的面积推导作铺垫,构建新知学习的立体框架。五、交流评价,总结升华1、小结全课:谈谈你的收获及感想。2、集体评价:自评、互评自己在本课中的表现。完善知识结构,训练思维品质,升华发现能力①通过人性化语言,体现以人为本思想。②引入互动评价方法,交流活动感受,形成自我反馈机制。
最富趣味的是荷兰艺术家埃舍尔,他到西班牙旅行参观时,对一种名为阿罕拉的建筑物有很深的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺了种类繁多、美仑美奂的马赛克图案。Escher用数日的时间复制了这些图案,并得到了启发,创造了各种并不局限于几何图案的密铺图案,这些图案包括人、青蛙、鱼、鸟、蜥蜴,甚至是他凭空想象的物体。他创作的艺术作品,结合数学与艺术,给人留下深刻的印象,更让人对数学产生了另一种看法。欣赏埃舍尔的艺术世界:2、动手创作。(小小设计师)看了大艺术家的作品,你现在是不是也有了创作的冲动?下面,请你选一种或几种完全一样的图形进行密铺,可以自己设计颜色,比一比,谁的设计更美观、更新颖。(交流,展示)四、总结:谈收获体会我们今天只是研究了一些规则图形的简单的密铺。生活中还有各种各样的密铺现象。同学们可以到生活中去观察,也可以上网浏览。
(二)合作交流,探究新知出示例题。(小黑板)先全班同学读题,教师在解释说明题目中“存定期一年”表示什么意思。一般来说,存款主要分为定期、活期等储蓄方式。所谓活期存款是指储户可以随时提取的一种方式;定期存款是有一定期限的一种存款方式,定期存款又分为整存整取和零存整取等形式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年的等等。(让学生在议一议、说一说的基础上,说出自己是怎样想的,交流归纳对问题的认识,理解存款的定期、活期的年月限即时间,以及存款方式。)小丽存的是“定期一年”,即小丽在银行存的100元在一般情况下要在银行存一年,如果有特殊情况也可以提前提取。下面请同学们合作交流,思考如下几个问题。(出示投影片。)(1)你猜一猜,小丽把100元存入银行叫做什么?(本金)(2)你估算一下,小丽把100元存入银行,定期一年,全部取出,取出的钱会大于100元吗?为什么?
密铺的历史背景1619年——数学家奇柏(J.Kepler)第一个利用正多边形铺嵌平面。1891年——苏联物理学家弗德洛夫(E.S.Fedorov)发现了十七种不同的铺砌平面的对称图案。 1924年——数学家波利亚(Polya)和尼格利(Nigeli)重新发现这个事实。最富趣味的是荷兰艺术家埃舍尔(M.C. Escher)与密铺。M.C. Escher于1898年生于荷兰。他到西班牙旅行参观时,对一种名为阿罕伯拉宫(Alhambra)的建筑有很深刻的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺上了种类繁多、美轮美奂的马赛克图案。Escher 用数日复制了这些图案,并得到启发,创造了各种并不局限于几何图形的密铺图案,这些图案包括鱼、青蛙、狗、人、蜥蜴,甚至是他凭空想像的物体。他创造的艺术作品,结合了数学与艺术,给人留下深刻印象,更让人对数学产生另一种看法。
(教师要深入各个小组中,参与学生方案的制定,但教师不是决策者,决策权在学生手中。)【设计意图:练习设计围绕本节课的教学目标,具有层次性。同时,开放性练习的设计——采用小组合作,让学生设计购书方案,使学生进一步感受到生活中处处有数学,运用数学知识还能省钱,合理安排日常生活开支,培养了学生自觉应用数学的意识。】五、课堂总结。同学们,通过这节课的学习,你有什么感想?你们今天的表现都很出色。其实生活中还有许多问题需要我们用数学知识去发现、去思考、去探索,希望大家能做个有心人!教学设计自我评析:新课程标准指出:“数学源于生活、寓于生活、用于生活。教师应重视从学生的生活经验和以有的知识中学习数学和理解数学。”