目标导学三:学习综合运用多种表达方式明确:本文以记叙为主,穿插着议论、抒情。第一部分,作者首先抒发了自己的亲身感受,又以“谁是我们最可爱的人”设问作为记叙、议论的中心,接着用一个气势磅礴的排比句揭示了志愿军战士的精神风貌,从意志、品质、气质、胸怀四个方面进行高度评价和赞美,为文章具体事例的叙述做了思想认识方面的提示和感情的铺垫。第二部分,文章以记叙为主,具体叙述了三个典型事例,在叙述完每一个事例后,文章都穿插了议论、抒情。这些议论抒情,既起到深化主题的作用,又增强了文章的感染力。第三部分,作者告诉人们要珍惜战士们用鲜血和生命换来的幸福生活。没有用单调枯燥的说教,而是用朋友的恳谈来启迪人们感受到幸福生活的来之不易。拓展延伸:收集新时代“最可爱的人”典型事迹的资料,准备举办演讲会。
结束这节课,我心里很轻松,因为在以往的教学中学生感觉到:说明文很单调、枯燥不生动。而本节课学生与我配合得非常好,原因是我利用多媒体展示的几幅画面,把学生的注意力都集中在所讲的内容中,并且调动了学生学习的积极性,认为物候现象就在我们的身边,激发学生探索科学奥秘的兴趣,更多地去了解大自然,认识大自然,热爱大自然。在初读课文的时候,我训练了学生的概括能力;在分清举例说明的方法时,让学生明白什么是举例子的说明方法;在细读课文的时候,让学生学习生动地有条理地说明事物的方法,还重点品味第一段的生动语言,在品味说明文语言的准确性时,有日常生活中的例子导入,深入浅出地讲解了说明语言准确性的两点情况。
目标导学二:细读课文,把握人物形象作为一个科研工作者,尤其是在极度艰苦的工作环境下,想要获得成功不仅需要技术上的努力,更需要这位伟大的科研工作者集一切美好的品质于一身,居里夫人无疑就是这样的一个典型。请你细读文章,找到表现居里夫人人格魅力的句段,探究居里夫人的精神品格。明确:(1)对科学事业诚挚的热爱。“工作日变成了工作月,工作月变成了工作年,比埃尔和玛丽并没有失掉勇气。这种抵抗他们的材料迷住了他们。”其中的“迷住”一词突出表现了居里夫人对科学的痴迷和挚爱。(2)无惧一切困难,敢于将想法付诸实践。“最困难的,或者说几乎不可能的,乃是离析这极小含量的物质,使它从与它密切混合着的杂质中分离出来。”居里夫人选择最困难的工作,付出艰苦的劳动。(3)持之以恒、不轻言放弃。“工作日变成了工作月,工作月变成了工作年。”在这日复一日、年复一年的工作中,居里夫人终于提炼出了镭。
我想,收到短信的人心里一定是暖暖的!“吱吱吱……”我又觉得浑身一震,主人的朋友B的短信又来了,我欢快地唱起了歌儿,提示主人接收短信:“请用1秒钟忘记烦恼,用一分钟想象快乐,用一小时与你喜欢的人度过,用一辈子关怀你爱的人和爱你的人,然后用一个微笑来接收我传递给你的祝福,愿你永远开心!”多么温馨的短信,多么暖人的祝福,瞧,主人心里乐开了花……我,难道不是社会进步的象征吗?不是社会和谐的见证吗?本文采用拟人手法来写,生动地说明了手机的特点、用途,介绍了手机发展和改进过程,条理清楚,语言准确。文章恰当地运用了举例子、做比较的说明方法,使读者对说明的事物有鲜明深刻的印象。还有一大亮点就是幽默诙谐、流畅自然的语言,颇引人注目。小作者以手机的口吻叙说生活中人与手机相处的点点滴滴,读来不禁有身临其境之感。结尾展望了手机发展的美好未来,给人以憧憬。
请写出 推理过程:∵ ,在两边同时加上1得, + = + .两边分别通分得: 思考:请仿照上面的方法,证明“如果 ,那么 ”.(3) 等比性质:猜想 ( ),与 相等吗?能 否证明你的猜想?(引导学生从上述实例中找出证明方法)等比性质:如果 ( ),那么 = .思考:等比性质中,为什么要 这个条件?三、 巩固练习:1.在相同时刻的物高与影长成比例,如果一建筑在地面上影长为50米,高为1.5米的测竿的影长为2.5米 ,那么,该建筑的高是多少米?2.若 则 3.若 ,则 四、 本课小结:1.比例的基本性质:a:b=c:d ;2. 合比性质:如果 ,那么 ;3. 等比性质:如果 ( ),五、 布置作业:课本习题4.2
学生欣赏。教师补充讲解。谈谈你有什么感受。同学们,你们勤劳的双手除了做自己的事以外,还为别人做过事吗?师:同学们,你们的小手可真能干 ,会做这么多事情,我们来夸夸自己吧。(学生(齐):嘿嘿,我很棒!)师:我们不但自己的事情自己做,而且还能够别人的事情帮着做。我们的双手会干这么多事情,我真为你们感到高兴。那你们想一想,要是遇到我们不会干的事情,我们又该怎么做呢?学生交流。师:我们不会干的事情一定要学着去做。5、欣赏歌曲《我有一双勤劳的手》6、倡议正如歌曲里的“我有一双勤劳的手,样样事情都会做”下面,周老师提出7条倡议。师:全体起立,请我们班的全体同学从今天开始都能做到:(出示)跟老师一起读。
1.会用度量法和叠合法比较两个角的大小.2.理解角的平分线的定义,并能借助角的平分线的定义解决问题.3.理解两个角的和、差、倍、分的意义,会进行角的运算.一、情境导入同学们,如图是我们生活中常用的剪刀模型,现在考考大家,剪刀张开的两个角哪个大呢?二、合作探究探究点一:角的比较在某工厂生产流水线上生产如图所示的工件,其中∠α称为工件的中心角,生产要求∠α的标准角度为30°±1°,一名质检员在检验时,手拿一量角器逐一测量∠α的度数.请你运用所学的知识分析一下,该名质检员采用的是哪种比较方法?你还能给该质检员设计更好的质检方法吗?请说说你的方法.解析:角的比较方法有测量法和叠合法,其中测量法更具体,叠合更直观.在质检中,采用叠合法比较快捷.
【类型一】 逆用积的乘方进行简便运算计算:(23)2014×(32)2015.解析:将(32)2015转化为(32)2014×32,再逆用积的乘方公式进行计算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法总结:对公式an·bn=(ab)n要灵活运用,对于不符合公式的形式,要通过恒等变形转化为公式的形式,运用此公式可进行简便运算.【类型二】 逆用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法总结:利用积的乘方,转化成同底数的同指数幂是解答此类问题的关键.三、板书设计1.积的乘方法则:积的乘方等于各因式乘方的积.即(ab)n=anbn(n是正整数).2.积的乘方的运用在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:an·bn=(ab)n,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n为奇数时,(-a)n=-an(n为正整数);当n为偶数时,(-a)n=an(n为正整数)
解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系
解析:根据“全等三角形的对应角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形内角和定理来求∠ACB的度数.解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法总结:本题将三角形内角和与全等三角形的性质综合考查,解答问题时要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.三、板书设计1.全等形与全等三角形的概念:能够完全重合的图形叫做全等形;能够完全重合的三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应角、对应线段相等.首先展示全等形的图片,激发学生兴趣,从图中总结全等形和全等三角形的概念.最后总结全等三角形的性质,通过练习来理解全等三角形的性质并渗透符号语言推理.通过实例熟悉运用全等三角形的性质解决一些简单的实际问题
【类型二】 根据数轴求不等式的解关于x的不等式x-3<3+a2的解集在数轴上表示如图所示,则a的值是()A.-3 B.-12 C.3 D.12解析:化简不等式,得x<9+a2.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
二、 说学情五年级的孩子已具有一定的阅读能力,对文本有独特的阅读体验。对于作者来说,祖父的园子是她童年时候的乐园,对于每一个孩子来说,他们每个人心中都有着或向往着这样的一方天地。祖父园子里面的各种趣事,很多都是学生们亲身经历过的,符合学生的心理,容易引起学生的共鸣,进而在文章中获得感知,加以模仿,发展想象力,锻炼学生的理解能力和语言表达能力。
一、说教材《池子与河流》是统编小学语文三年级下册第二单元中的一篇略读课文,是一首寓言诗。描述了池子与河流的对话,文章巧妙运用对比烘托人物形象。文中的对比,分为两个方面,一是生活态度的对比,池子贪图安逸,沉迷享受,而河流积极进取,奔流不息;二是不同结局的对比,池子枯干,河流长流不断,通过鲜明的对比,赞美了河流积极进取的精神。二、说学情小学三年级的学生的认知能力和理解能力较第一学段有所增强,但思维方式仍是以形象思维为主,抽象思维和逻辑思维属于初级阶段。这样的学情决定三年级的寓言教学要在低年段了解内容的基础上,通过多种阅读渠道与文本进行心灵的对话、思维的碰撞、情感的交流,从而帮助学生初步把握内涵,体会寓意,初步感受寓言故事生动的语言对刻画形象、揭示寓意所起到的作用。三、说教学目标1.认识本课生字,能够正确读写词语。 2.分角色朗读课文,懂得河流长流不断,池子一年年淤塞的原因。3.学习“河流”积极进取的人生态度。
为了让孩子们了解影子产生的原因,我又组织孩子们进行了一次“影子从哪里来”的讨论活动。围绕着“为什么会有影子?”这个话题孩子们议论开了:有的说:“有太阳的时候,在操场上走,太阳照在我们身上,地上就有影子”;有的说:“晚上,爸爸妈妈带我去广场散步,路灯照下来,也会有影子的”;有的说:“手电筒的光无论照到什么都会有影子的”;有的说:“电视机、电脑荧屏上的光照出来也会有影子的”……大家回忆着以往的经验。我从孩子们的讨论中了解到孩子们对影子产生的条件有着正确但却模糊的概念,于是我进行了小结:小朋友们说得真好,影子的产生是因为光照到了不透明的物体上才产生了影子。于是,为了让孩子们更进一步了解影子的产生和影子的秘密,我为孩子们准备了许多材料:有投影仪、台灯、手电筒、玩具飞机、娃娃、皮球、图书等等。大家拿着材料就开始忙碌起来了:在灯光下,有的用手摆出各种动作;有的把娃娃横着放,竖着放;有的把书打开放;有的一会儿把手电筒举得高高,一会儿把手电筒紧贴玩具……。通过摆弄手势及物体,就能改变影子的形状、大小,变出各种形态各异的模样来,孩子们在自己的操作下对于自己不断的发现高兴得欢呼雀跃,对影子这个主题产生了浓厚的兴趣。
活动准备: 带幼儿参观植物园或附近的公园,收集落叶。 录音机、音乐磁带,线、纸条、双面胶等。活动目标:1、发展幼儿的观察能力并体验游戏带来的快乐。2、激发幼儿想象,创编叶子飞舞的动作并用肢体动作来表现音乐。 活动过程: 一、观察、接触各种植物的叶子: (把幼儿分成三组,每组摆放一篮叶子供幼儿自由选择)1、观察叶子的形状及颜色。教师:“你们发现了什么?这些叶子都一样吗?”给幼儿自由谈论的时间,相互交流、分享经验。2、鼓励幼儿大胆想象叶子的形状像什么?同时让幼儿在白板上用线条画出叶子的轮廓,进一步熟悉叶子的外型。3、发展幼儿的动手能力,串叶子,做挂饰。每个幼儿拿一片自己喜欢的叶子固定在纸条或线上,挂在脖子上。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。