孩子们的盛大节日——六一国际儿童节,下面是小编收集整理的XX年六一节国旗下讲话稿,欢迎阅读参考!!XX年六一节国旗下讲话稿一 尊敬的各位领导、各位来宾、各位家长, 亲爱的老师们、亲爱的小朋友们:你们好!又到了星期一了,我们今天又站在了操场上,看我们的五星红旗冉冉升起,今天国旗下讲话的题目是《六一儿童节》,每年的6月1日是小朋友们最开心最快乐的时候,因为这一天是六一国际儿童节,是我们小朋友自己的节日,在这样的节日里,全世界小朋友都载歌载舞,都在和自己的小伙伴们一起欢度自己的节日。去年的六一儿童节,小朋友们还记得吗?我们在大舞台上我们一起唱歌跳舞,和你们的爸爸妈妈一起拍照片。那个时候的样子,你们还记得吗?时间过的真快,今年的六一儿童节又要到了,你们都准备好了吗?你们都准备了哪些节目来欢度节日的?(幼儿讨论)你们准备了这么多节目啊?老师都非常喜欢,这段时间,小朋友们辛苦了,为了表演出更多精彩的节目,小朋友流了许多的汗,吃了许多的苦,但是你们心里开心吗?老师非常期待能够看到你们的精彩表演,也在这里提前预祝全体小朋友们六一儿童节节日愉快。
欢庆“六一”儿童节!下面是小编收集整理的XX年幼儿六一国旗下讲话稿,欢迎阅读参考!!XX年幼儿六一国旗下讲话稿一 大家好,我是陈xx。今年六岁了,是大三班的小朋友。我很荣幸成为今天的升旗手。在幼儿园里,老师教会了我们感恩,教会了我们分享。老师就象妈妈一样关心爱护着我们。我们很幸福,很幸福!再过一周就是我们另一个妈妈的生日了——十月一日国庆节。我们要努力学习,锻炼身体,长大后建设祖国。小朋友,让我们一起大声祝福:祖国妈妈 生日快乐!敬爱的的老师,亲爱的小朋友们:大家好!我是大三班的xx。今天我能将鲜艳的五星红旗升上蓝天,感到无比的激动和自豪!我热爱运动,喜欢跑步,打乒乓球,跳绳,我可是班上的跳绳冠军哦!我还想对老师说:“老师,谢谢你们,你们辛苦了!是你们,在我遇到困难时,给我帮助;是你们,在我取得成绩时,给我鼓励;是你们,给了我一次又一次的锻炼的机会。今后,我要好好学习,天天向上!大家好!我是大三班的武xx,我今年七岁了。我爱我的幼儿园,爱我的老师,爱我的小伙伴。冬天已经悄悄的来临了,但是我不怕冷。我会拍球,现在我正在学跳绳,让我们一起动起来,赶走寒冷!我运动,我快乐!
二是试点工作有所突破。今年一季度,全**4个单位共争取国家级和省级改革试点4项。其中,国家级试点2项【市场监管总局选择****作为“个转企”国家级试点**,团中央批准****街道社**为“团中央社**青春行动试点社**”】;省级试点2项【**省民政厅批准社工站打造成省级示范社工站,团省委批准****街道社**打造成全省共青团城市基层组织改革试点】。三是改革氛围日渐浓厚。持续加强对改革的宣传推介和政策解读,不断提高人民群众的知晓度、关注度和满意度。持续加大先进典型和成功经验的宣传力度,积极向市委改革办推介**改革的典型经验和特色亮点。我**行政审批局颁发全省首张“个转企”营业执照的相关新闻在中国经济网、**日报、长城网等央媒和省市媒体刊发,受到了一致好评。
材料一:19世纪中期到20世纪初,英、法等西方列强先后发动了一系列侵略战争,强迫清政府签订了一系列不平等条约,中国逐渐沦为半殖民地半封建社会。材料二:经历了从“师夷长技以制夷”到变法维新的探索,人们发现温和的改良无法从根本上改变旧制度。于是,人们举起义旗,发动革命,推翻旧王朝,建立了共和国,接着,高举民主、科学大旗,吹响了思想解放的号角。(1)材料一中,使中国开始和完全沦为半殖民地半封建社会的两大不平等条约分别是什么?(2分)(2)材料二中,“师夷长技以制夷”指的是什么历史事件?(1分)在该历史事件中“师夷长技”的根本目的是什么?(1分)
材料一 汉代王充説:“商鞅相孝公,内秦升帝业。”(1)根据材料一,回答商鞅変法对秦国的作用。(1分)材料二 19世紀50~70年代俄国机器制造业統計表据统计,1860~1890年,俄国的生铁产量增加了2倍,钢产量和棉纺织业的产值都增加了3倍,而煤炭产量的增加则超过了19倍。在此期间,俄国的整个工业产量增长了6倍。(2)请概括材料二中的历史信息。(1分)哪次改革推动了以上现象的出现? (1分)材料三 1933年整个资本主义世界工业生产下降40%……美、德、法、英大量企业破产,资本主义世界失业工人达到3000多万,几百万小农破产,无业人口颠沛流离。——摘编自 《世界历史》九年级下册(3)材料三反映了资本主义世界哪一重大事件? (1分)针对这一一事件,美国采取了什么应对政策? (1分)(4)通过以上问题的探究,你能得到哪些启示? (1分)
第二次世界大战终于落下了帷幕,但人们所希望的真正和平并未降临。美国、苏联这对战时的盟友很快变成了“冷战“的对手。”“冷战”为什么会爆发呢?史学家们从以下四个不同角度进行了分析:[角度一]美国当时拥有最强大的经济与军事实力,确立了称霸世界的全球战略,日益把苏联看作其称霸全球的主要障碍,企图遏制苏联。[角度二] 苏联为反法西斯战争胜利做出了重大贡献,国际威望大大提高,并且军事力量大大加强,能与美国抗衡。战后,苏联把确保东西部边界安全作为国家的首要利益,在自己的周边建立“安全带”,努力扩大自己在世界上的影响,推行大国沙文主义(即征服和奴役其他民族的思想和主张。)
公元前8世纪,罗马城逐步建立起来。公元前509年,罗马建立了共和国。之后,逐步征服了意大利半岛。公元前49年,凯撒夺取政权。公元前27年,屋大维开始独揽国家大权,罗马共和国被罗马帝国取代。到了2世纪,罗马帝国成为地跨欧亚非三大洲的帝国。1世纪,基督教产生于巴勒斯坦一带。在西欧长期动乱的过程中,基督教会乘机扩大势力和影响,教皇和教会不仅是西欧最大的土地所有者,还是西欧封建制度的精神支柱。3世纪起,罗马帝国爆发了全面危机。395年,罗马帝国分裂为东、西两部分。476年,西罗马帝国被日耳曼人灭亡,西欧开始进入封建社会。6世纪,东罗马帝国四处征伐,帝国日益衰落。1453年,君士坦丁堡被土军攻陷,东罗马帝国灭亡。 ——摘编自人教版《世界历史?9年级上册》
材料一:“华盛顿,异人也。起事勇于胜广,割据雄于曹刘,既已提三尺剑,开疆万里,乃不僭位号、不传子孙,而创为推举之法,几于天下为公,骎骎乎三代之遗意。” ——摘自华盛顿纪念塔内的碑文材料二:1862年9月,林肯颁布了《解放黑人奴隶宣言》,规定从1863年元旦起,废除叛乱诸州的奴隶制,并允许奴隶作为自由人参加北方军队。 ——摘自《世界历史》九年级上册
材料 当代国学大师南怀瑾说:中国文化历史,在秦汉以前,主要是儒、墨、道三家,笼罩了全部的文化思想。到唐宋以后,换了一家,成为儒释道三家,这三家又笼罩着中国文化思想。佛学像百货店,有钱有闲,可去逛逛,逛了买东西也可,根本不逛也可,但社会需要它;道家像药店,它包括了兵家、纵横家的思想,乃至天文、地理、医药,一个国家、民族生病,非去这个药店不可;儒家的孔孟思想像粮店,是天天要吃的,要深切了解中国文化历史的演变、将来怎么办,就要研究四书。
材料一 一九一七年的俄国革命,是二十世纪中世界革命的先声。——《庶民的胜利》材料二美国独立战争期间,路易(法国国王路易十六)援助美国并非他热爱民主起义,而是由于他畏惧且憎恨英国。他帮助美国,支持自由事业,可这却成为压倒法国的最后一块巨石,法国已彻底倒闭了。 ——海斯·穆恩·韦兰《全球通史》(1)材料一中的“俄国革命”指的是哪一事件?(1 分)如何理解“俄国革命是二十世纪中世界革命的先声”?(1 分)(2)材料二中,为什么说美国的独立战争是一次“民主起义”?(1 分)(3)结合法国大革命的有关知识,指出法国国内存在的压倒它自身的一块“巨石”。(1 分)(4)结合所学知识,请从政治和经济两个角度,分析18 世纪后半期英国被法国“畏惧且憎恨”的原因。(2 分)
38.各国经济发展并非一帆风顺。阅读下列材料,结合所学知识,回答下列相关问题。材料一:1992年,一位创立了中国特色社会主义理论的世纪伟人,针对当时有些人担心实行改革开放会使中国“走上资本主义道路”的困惑,发表了重要谈话。谈话中他强调,“发展才是硬道理”、“改革开放的胆子要大一些”、“市场经济不等于资本主义,社会主义也有市场”,明确提出了判断是非的标准。——川教版八年级下册材料二:在某种意义上,有人说,他挽救了市场经济。市场经济不是说没有毛病,出了一些毛病。在20世纪30年代的时候,他引进了一些新政,然后使市场经济又回到一个比较健康发展的轨道……开创了市场经济的新模式。在这种模式中,市场的作用和政府的作用同时得以发挥。——《大国崛起》解说词(1)材料一中,“世纪伟人”发表的“重要谈话”被称作什么?(1分)“中国特色社会主义理论”在祖国统一大业方面出现了什么创新制度?(1分)哪次会议揭开了“改革开放”的序幕?(1分)(2)材料二中的“他”是谁?(1分)“他”开创的“市场经济新模式”为资本主义国家的发展提供了怎样的范例?(1分)
1、在全矿范围内宣传普及预防、避险、自救、互救、减灾等应急知识。 2、通过矿内广播、板报、通讯等有效方式大力宣传事故应急。 3、结合安全年活动的开展,进一步加大应急教育宣传工作力度,争取每月有一篇应急教育的宣传报道在县公司的报刊上发表。 4、灵活运用,形式多样,采取员工喜闻乐见的方式有针对性的进行宣传教育,将宣传教育工作的触角延伸到每一个员工。
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。