跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
学生谈感受。过渡:讲得很好。中国有句古语:“百善孝为先”。意思是说,孝敬父母是各种美德中占第一位的。一个人如果都不知道孝敬父母,就很难想象他会热爱祖国和人民。古人说:“老吾老,以及人之老;幼吾幼,以及人之幼”。我们不仅要孝敬自己的父母,还应该尊敬别的老人,爱护年幼的孩子,在全社会造成尊老爱幼的淳厚民风,这是我们新时代学生的责任。(二)做一个好学生,让老师幸福;做一个好伙伴,让同学幸福;做一个好少年,让社会幸福;提问:怎样才是一个好学生?怎样才是一个好伙伴? 怎样才是一个好少年?学生讨论——发言。老师小结:周恩来12岁立志“为中华崛起而读书”,这是多么远大的理想和抱负啊!最后他实现了理想。残疾少年周炜顽强勤奋,不仅生活能自理,还是一名品学兼优的学生。我们身边有很多很多同学,他们性格开朗,乐于助人,把欢乐带给周围的人。他们让老师觉得幸福。
活动目标:1、知道不同的蔬菜有不同的生长方式。2、按照蔬菜的食用部分,对蔬菜进行简单非分类。3、培养幼儿的合作能力和记录能力。活动准备: 蔬菜图片若干、疏菜整株与部分的课件、蔬菜分类统计表每组一张。活动过程:一、蔬菜从哪里来?——教师提出问题“我们吃的蔬菜是从哪里来的?”——幼儿讨论:(从超市买来的,从菜市场买来的,从很远的地方运来的,从地里种出来的)分析与反思:从这一环节幼儿的表现来看,幼儿对于“蔬菜从哪里来”这个问题,只是凭借自己的生活经验有一些模糊的认识,即便是能说出“从地里长出来的”也只是从大人那里听说,很少有人亲眼见过蔬菜的生长,这为下一环节的开展增加了难度,同时也增强了孩子们的探知兴趣。 二、蔬菜是怎样长出来的?——教师出示常见的具有代表性的几种蔬菜如:西红柿、白菜、土豆、藕请小朋友辨别一下是哪种蔬菜, 并找出我们吃的部分。——教师出示蔬菜的整体余局部的课件,帮助幼儿理解不同的蔬菜有不同的生长方式。(有的长在土里;有的长在水里;有的吃地上的茎叶;有的吃底下的茎)分析与反思:看到整棵蔬菜的图片,孩子们发出阵阵惊叹:“原来西红柿是长在树上的”“土豆原来长在土里,土豆树还开白色的花呢”“原来荷花的根就是藕呀”随着孩子们的阵阵惊叹声,他们的好奇心被充分的激发出来,学习兴趣也被充分的调动起来,达到了很好的教学效果。但是“图片呈现”的方式总感觉遥远不真实,如果活动当时能带孩子参过一下菜园,相信孩子们的印象会更深刻,理解也会更透彻。
2、萌发喜欢吃蔬菜的习惯。准备:1、多媒体演示2、各种蔬菜若干3、剪好的眼睛、嘴巴若干4、蔬菜宝宝一个5、种子、小苗实物6、请大班幼儿扮演老爷爷
本教材选自《幼儿园教育教学安排意见》小班内容,认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育使幼儿数学教育的重点内容。幼儿学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。发展它们的空间知觉能力和初步的空间想象力从而为小学学习几何形体做些准备。小班幼儿在他们充分获得对圆形的感知和确认后,再让他们认识三角形的特征,这对发展幼儿的观察力、比较能力和空间概念具有重要意义。认识三角形是在认识圆形的基础上进行的。这就为比较圆形和三角形奠定了知识基础,有利于幼儿对三角形的感知和掌握。本节课的知识点就是三角形的特征。基于以上对教材的分析,结合幼儿的认知特点,确定以下教学目标:1、教幼儿知道三角形的名称和主要特征,知道三角形由3条边、3个角。2、教幼儿把三角形和生活中常见的实物进行比较,能找出和三角形相似的物体。3、发展幼儿观察力、空间想象力,培养幼儿的动手操作能力。
《水生动物》是大班下册第六单元科学领域中的活动内容,本课主要内容是介绍了水生动物的基本特征和多样性,要求幼儿能根据不同的特征,对水生动物进行正确的分类,同时让幼儿了解水生动物与人类的关系,教育幼儿树立环保意识,保护我们的生存环境。选择此教材有一定的必要性,就如《纲要》中所说,“爱护动物,关心周围环境,亲近大自然,珍惜自然资源,有初步的环保意识。”因此,结合本班幼儿的实际水平制定了以下三个活动目标:(1)过观察讨论,让幼儿了解水生动物的基本特征、多样性和主要类别。(2)运用图片,对水生动物进行正确的分类,发展幼儿的分类概括能力。(3)让幼儿了解水生动物与人类的关系,保护其生存环境,树立保护大自然的环保意识。
《幼儿园教育指导纲要》明确指出:幼儿的科学教育是科学启蒙教育,重在激发幼儿的认识兴趣和探究欲望。教师要尽量创造条件让幼儿实际参加探究活动,使他们感受科学探究的过程和方法,体验发现的乐趣。因此,我确定本活动的教育目标是:1、激发幼儿探索科学现象的兴趣,培养幼儿创造性思维和对科学的探索精神。2、让幼儿探索有弹性的物体,获取有关弹性的科学经验,了解有关弹性的特征和在人们生活中的应用。科学教育蕴含的价值主要在于使幼儿亲历探究解决问题的过程,从而学会学习,学会生活,学会应用,所以我把活动的重点和难点确定为:了解弹性物体在人们生活中的应用。主要表现为引导幼儿找出周围常见的有弹性的物体,认识它的使用价值和应用的广泛性。二、说教学方法托尔斯泰说过:“成功的教学需要的不是强制,而是激发学生的学习兴趣。”新纲要也指出:“教师要尽量创造条件让儿童实际参加探究活动”,“亲身经历真实的研究过程”,要让幼儿真正做科学。根据布鲁纳的发现学习理论,我运用尝试教学法,并融进提问法、记录法、发现法等教法诱发幼儿探究的兴趣,创设能引导幼儿主动参与的活动环境,激发幼儿的学习积极性,尽量让每一个幼儿都能得到充分发展。说活动准备:因为大班幼儿已经具备了一定的比较分析能力,所以我准备了许多有弹性的物体和没有弹性的物体,让幼儿在操作实践中进行比较,获得进一步的感知,同时我还准备了大屏幕、投影仪,以备幼儿展示自己的记录结果,让他们获得成功的体验。三、说学法指导科学教育的目标强调幼儿能运用各种感官动手动脑、探究问题。作为幼儿学习活动的支持者、合作者、引导者,我为幼儿提供大量的丰富的操作材料,创设一种宽松融洽的氛围,引导幼儿主动积极的参与活动,直接操作、反复体验,主动探索,通过玩一玩、说一说、记一记、想一想、找一找、做一做等多种形式,让幼儿真正体验和了解弹性的特征,并激发幼儿学科学的浓厚兴趣。
四、说教学过程(一)结合现实、自然导入随着我国开放的深入发展,国外的科学、文化、技术以及资产阶级的腐朽思想,生活作风等等也随之大量涌来,我们应采取怎样的态度和方法才是正确的呢?鲁迅先生在30年代就继承文化遗产问题曾写过一篇杂文,我们可以从中获得那些启示呢?(二)整体感知、疏瀹文意1.请同学介绍“我所知道的鲁迅”,教师补充写作背景。教师有针对性的进行预习检查,能促使学生养成课前预习的习惯。2.理清文章的思路,分析文章的整体结构教师范读课文,针对较难的字音进行正读。学生快速浏览课文,把握全文框架,小组讨论后分出层次。(让学生通过自主合作探究来概括文意可以让同学们参与到教学活动中,锻炼学生实际动手能力)
(三)说目标鉴于以上学情分析,结合单元学习任务群——思辨性阅读与表达的定位,确定本课教学目标为通过设置任务情境,带领学生在活动中认识表达的有针对性、论述的层次逻辑性以及感受文章蕴含的批判力量。其中以表达的有针对性为教学重点,以论述的层次逻辑性为难点。(四)说理念根据课标和教材特点,结合学情,授课将依托“学为中学理论”“建构主义学习理论”和“最近发展区理论”等,积极开展阅读与鉴赏、表达与交流、梳理与探究等语文实践活动提升学生语文核心素养。三、教学实施(一)设定学习情境为引导广大学生合理对待外来文化,学校辩论社拟设定辩题——如何正确对待外来文化展开辩论。有同学说坚决抵制外来文化(正方),也有同学说要积极吸收(反方)……那么如果你是其中一位辩手,你将在《拿来主义》中如何撷取素材呢?
学生展示:鲁迅在《拿来主义》讨论“送去主义”时使用的不是徐、刘二人欧洲巡展的事实,而是《大晚报》评价二人欧洲巡展为“发扬国光”这一事实,故用了“叫作”,且是加引号的“发扬国光”;用“送”字表明自己针对的对象不是梅兰芳本人及其艺术,而是“送梅兰芳博士到苏联去”的人及其行为,即强行将中国戏剧与象征主义相联系的牵强附会的行径。可见,鲁迅针对的是当时国民政府一味送去的行径和主流媒体宣扬为“发扬国光”的舆论导向。设计意图:有的放矢,针砭时弊是杂文的突出特征。耙子指向哪儿、时弊是什么是必须思考的问题。有学生误以为鲁迅在批判徐悲鸿、刘海粟、梅兰芳等人,甚至调侃说鲁迅“怼人狂魔”“老阴阳师”。通过此活动,细读文本,还原历史,抓住“叫作”与“送”的主体,找准鲁迅批判的对象和针对的现象。同时,引导学生用不可随意使用所谓网络“梗文化”来消解名人、伟人等事迹的严肃性,不可以娱乐心态品读经典作品。
(3)师生讨论,提升思维深度。教师引领学生将讨论由农业生态破坏、土地利用不合理等表象问题逐步深入到农业结构不合理、农业技术落后等深层问题,提升了学生思维的深度。(4)角色体验,突破难点落实重点。在农民与保护区工作人员的角色体验活动中,学生们尝试换位思考,在冲突与交锋中,在教师的引领下,重新认识环境保护与区域经济发展的关系,在情感体验中加深对可持续发展内涵的理解,小冲突凸显大矛盾是本课设计的创新之处。2.注重对地理问题的探究,突出地理学科本质。地理学科具有综合性、区域性特征,区域差异及人地和谐发展观是我们在教学中应该把握的基本特征,也是我们应当把握的地理学科的本质特征,因此在本节课的设计中我注重抓住地理事物的空间特征、综合性特征,以突出地理学科的本质。
教师活动:(1)组织学生回答相关结论,小组之间互相补充评价完善。教师进一步概括总结。(2)对学生的结论予以肯定并表扬优秀的小组,对不理想的小组予以鼓励。(3)多媒体投放板书二:超重现象:物体对支持物的压力(或对悬挂物的拉力)大于物体所受到的重力的情况称为超重现象。实质:加速度方向向上。失重现象:物体对支持物的压力(或对悬挂物的拉力)小于物体所受到的重力的情况称为失重现象。实质:加速度方向向下。(4)运用多媒体展示电梯中的现象,引导学生在感性认识的基础上进一步领会基本概念。4.实例应用,结论拓展:教师活动:展示太空舱中宇航员的真实生活,引导学生应用本节所学知识予以解答。学生活动:小组讨论后形成共识。教师活动:(1)引导学生分小组回答相关问题,小组间互相完善补充,教师加以规范。(2)指定学生完成导学案中“思考与讨论二”的两个问题。
A.城镇数量猛增B.城市规模不断扩大【设计意图】通过读图的对比分析,提高学生提取信息以及对比分析问题的能力,通过小组之间的讨论,培养合作能力。五、课堂小结和布置作业关于课堂小结,我打算让学生自己来总结,你这节课学到了什么。这样既可以提高学生的总结概括能力,也可以让我在第一时间内获得它们的学习反馈。(本节课主要学习了珠三角的位置和范围以及改革开放以来珠三角地区工业化和城市化的发展。)关于作业的布置,我打算采用分层次布置作业法。第一个层次的作业是基础作业,要求每一位同学都掌握,第二个层次的作业是弹性作业,学生可以根据自己的情况来选做。整个这堂课,老师只是作为一个引导者、组织者的角色,学生才是课堂上真正的主人,是自我意义的建构者和知识的生成者,被动的、复制式的课堂将离我们远去。
【设计意图】传统教学中,只能是一名学生说,其他同学在脑中想象,但是借助多媒体的演示,学生能够真实的看到生活中的图形和交通标志,可以让学生更加深刻的体会到长方形、正方形、三角形和圆形在生活中普遍性,体会数学与生活的联系,在知识与生活间精心搭设了一座桥梁,生动体现了数学的生活化。(三)实践应用,巩固新知1、连一连。2、涂一涂。3、画一画一年级《认识图形》说课稿教案。4、数一数【设计意图】练习是学生掌握知识、形成技能、发展智力的重要手段。这个环节我设置了四项不同的练习,帮助学生巩固新知。此外,这一环节也是教学中应用信息技术手段效果最佳的环节,充分体现了信息技术与数学教学的完美整合。(四)总结反思,深化认识你打算怎样把这些图形介绍给爸爸妈妈呢?
教学难点:让学生经历比较简单分数大小的过程,并能解决简单的实际问题.设计本课时,我注重为学生创设恰当的参与,实践探究必备的空间,让学生在主动参与学习活动的过程中,引导学生有效思考,撑握简单分数大小比较的方法,活动重在让学生经历探索与发现的过程,使其在课堂中既有获取知识,能力也得到了培养。本科课堂教学我从学生感兴趣的游戏和故事两方面入手:游戏对于孩子一直是感兴趣的话题,同分母分数比较大小在了解分数的意义之后,对于学生学习这一部分来说是比较简单的,如何提高学生的学习兴趣,我脱离书本这一载体设计了莫分数比大小这一游戏,在课堂上学生自主地参与活动,通过让学生动手做、动脑想:你想摸到几颗棋子?为什么?、动口说:比这个分数大的分数还有?比这个分数小的分数还有?,使学生在活动中发现问题分母相同的分数如何比较大小?寻求规律分母相同的分数比较大小的方法。
②癌症患者在治疗过程中,会有很大的身体损耗,而黄鳝有很好的滋补作用,适当吃一点黄鳝,既能够为患者补充营养,也能够提高患者的身体免疫力。 (来源于报纸)经过讨论交流,每一组一名同学自主发言,老师点拨,最后形成小结。看来源 要权威发布,不要道听途说看内容 要事实清晰,不要模糊遗漏看立场 要客观公允,不要情绪煽动看逻辑 要严谨准确,不要简单断言情感判断 理性判断 理性表达(四)活动三,重实践新课标提到,语文课程应引导学生在真实的语言运用情境中,通过自主的语言实践活动,积累经验,把握规律,培养能力。据此,我设计了以下贴近学生生活、可参与性强的活动。多媒体展示案例,仍然是先讨论交流,再自主发言,说出案例有哪些问题。这是某校园论坛上的一则寻物启示。
一年来,学校各项工作取得了突出成绩。德育工作不断创新,学校常规检查扎实有效,规范了学生的行为,使学生行为更文明,学习更进步,学生精神面貌焕然一新。课堂教学引入了合作教学理念和方法,合作创新教学初见成效,电化教育有了突破性进展,学校文体教育搞得扎扎实实。学校的办学条件得到了很大的改善,建设高档次的学生微机室,使学生得以上网学习,建设教育宽带网工程,每个教室大屏幕彩电和视频展示台的广泛使用,以及多媒体教室和校园网的建成,大大优化了学习条件,激发了学习兴趣,提高了教学效率
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。