解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n边形的一个顶点可以作(n-3)条对角线,把多边形分成(n-2)个三角形,所以,要使一个n边形木架不变形,至少需要(n-3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.三、板书设计1.边边边:三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.2.三角形的稳定性本节课从操作探究活动入手,有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边边边”掌握较好,达到了教学的预期目的.存在的问题是少数学生在辅助线的构造上感到困难,不知道如何添加合理的辅助线,还需要在今后的教学中进一步加强巩固和训练
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)设AE与DG相交于M,AE与CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板书设计1.边角边:两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.两边和其中一边的对角对应相等的两个三角形不一定全等.2.全等三角形判定与性质的综合运用本节课从操作探究入手,具有较强的操作性和直观性,有利于学生从直观上积累感性认识,从而有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边角边”掌握较好,但在探究三角形的大小、形状时不会正确分类,需要在今后的教学和作业中进一步加强分类思想的巩固和训练
1.理解并掌握三角形全等的判定方法——“角边角”“角角边”;(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(难点) 一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:全等三角形判定定理“ASA”如图,AD∥BC,BE∥DF,AE=CF,试说明:△ADF≌△CBE.解析:根据平行线的性质可得∠A=∠C,∠DFE=∠BEC,再根据等式的性质可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法总结:本题主要利用了“直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计1.三角形的内角和定理:三角形的内角和等于180°.2.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余.本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180°这一结论
教学目标(一)教学知识点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.(二)能力训练要求发展学生的数学应用意识和解决问题的能力.(三)情感与价值观要求1.在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气. 2.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.教具重点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索——发现法教具准备多媒体演示
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
(二)加强土地要素保障。完善种业、设施农业发展用地政策,明确用地类型和供地方式,实行分类管理。在符合国土空间规划的前提下,通过村庄整治、土地整理等方式,将节余的农村集体建设用地优先用于种业、设施农业项目建设。(三)大力发展设施农业。以种业创新为抓手,以种业振兴促进产业振兴,通过设施农业促进产业结构调优。设施蔬菜方面,以设施大棚建设和水肥一体化改造为重点,在辖区三镇各策划一个千亩以上设施蔬菜示范基地,在xx美丽南方建设种业新品种繁育示范园,同时跟进配套设施建设。设施畜牧业方面,发展以高效集约为主的现代设施畜牧业,打造设施生猪产业,适度规模发展牛羊养殖。提升扩大xx鸡种鸡场规模,支持金光和牛扩大规模,加快推进xx两个未完工养殖场建设,配套建设青贮饲料加工场。设施渔业方面,发展以生态健康养殖为主的现代设施渔业,推广xx圆桶养殖,布局建设池塘工程化循环水养殖水槽。通过xx黑鱼项目示范带动周边村坡改造现有鱼塘养殖,力争养殖面积达到xxxx亩以上。扶持发展龙头企业和农民专业合作组织,提高群众发展现代设施农业的积极性,形成以农民投入为主、政策项目支持为补贴、社会力量参与的多元化投入机制,解决建设资金短缺的问题。
活动目标1.在理解故事的基础上,大胆表达自己的想法。2.尝试对物体的大小进行比较、匹配。 活动准备 三只熊图片,ppt,三只熊及大中小三只沙发(人手一份),粘贴工具 活动过程一、引发兴趣1.出示三只熊的图片,介绍熊的一家。2.出示三只碗的的图片 提问:你猜猜看这三只碗是谁用的?3.出示三把椅子的图片,请幼儿说说这三把椅子分别是谁坐。
一、导入新课成为一位科学家是无数有志青年的梦想,对物理的探究更是许多年轻的学子孜孜以求的,我们来看一下加来道雄的成长道路,或许能得到一些启发。(板书)一名物理学家的教育历程二、明确目标1.引导学生从生活出发,了解科学、认识科学2.引导学生以“教育历程”为重点,探讨其中表现的思想内涵。三、整体感知1.作者简介加来道雄,美籍日裔物理学家,毕业于美国哈佛大学,获加利福尼亚大学伯克利分校哲学博士学位,后任纽约市立大学城市学院理论物理学教授。主要著作有《超越爱因斯坦》(与特雷纳合著)《量子场论》《超弦导论》。2.本文的基本结构文章的题目是“一名物理学家的教育历程”,因此,叙述的顺序主要是历时性的。但是,作者开头就说“童年的两件趣事极大地丰富了我对世界的理解力,并且引导我走上成为一个理论物理学家的历程。”而“童年的两件趣事”作为文章的主要内容,又是共时性的叙述。这样的结构安排,使文章既脉络清楚,又重点突出。
一、合约范围:甲乙双方签订合约,乙方即为甲方的签约艺人,甲方即为乙方经纪公司。甲乙双方达成共识,双方共同发展,共同获益。乙方一切与甲方相关的演艺活动和所有商业行为,均应完全依照本合约的相关约定。*合约有关的名次解释:演艺活动:本合约特指一切线上与商业或非商业行为有关的,在网络公开或公开场合有关乙方形象、声音、演唱或舞蹈等表演活动。二、合约期限:自合约签订之日起,本合约有效期 年 月 日,至 年 月 日合约终止,可自动续约,甲方有优先续约权。三、甲方的权利和义务:1.1、甲方将负责本合约范围内乙方全部演艺工作的市场运作和直播活动,甲方即为乙方唯一的独家演绎平台,甲方有权利分配乙方的直播平台和直播时间。同时在本合约期内,音、视等作品及相关衍生作品的全部版权和邻接权的使用和转让权利。未经双方许可,任何第三方不得以任何方式使用。
三、再读感知,理清结构1.学生大声朗读课文,想想:作者是分几个部分介绍巨人花园的?(三个部分)是按照什么顺序将材料串接起来的?(事情发展的顺序)哪些地方给你留下了深刻的印象?2.学生以小组为单位交流读后的收获,教师巡视指导。3.小组推荐一名同学汇报交流的结果,其他同学做补充。4.教师总结。【出示课件6】第一部分(1、2自然段):巨人回来前巨人花园可爱而快乐。第二部分(3-9自然段):巨人回来后驱赶孩童,花园充满凄凉和没有了生机。第三部分(10-15自然段):发现原因后,巨人欢迎孩子,花园又充满快乐。5.概括课文的主要内容。【出示课件7】(本文讲的是巨人回来前巨人花园漂亮而快乐。巨人回来后驱赶孩童,花园充满凄凉,没有了生机。当弄清原因后,巨人欢迎孩子,花园又充满快乐。)
【品读课文,把握情感】1.小石潭到底有哪些乐趣呢?(找出“乐”的句子)(1)闻水声,如鸣珮环,心乐之。(2)似与游者相乐。2.深入探究,走近柳宗元。 “一切景语皆情语”,面对如此优美的景色,作者的心情却是“悄怆幽邃”。(播放一首古筝乐曲)这首古筝曲能为课文朗诵配乐吗?你能结合写作背景,说说你的理解吗?作者是被贬官到永州,不幸的遭遇令他感伤,本来想寄情于山水,遣散心中的郁闷,小石潭的美景使他惊叹不已,流连其中,得到了不少乐趣,暂时忘记了心中的痛苦,可是小石潭风景虽美却过于幽静冷清,游玩的时间一长,寒气透骨,难免触景生情,不由得忆起了自己的坎坷命运,忧郁、悲凉的心情自然地流露出来。3.柳宗元怀才不遇的悲凉郁闷,透过文字显现出来了。那么还有哪些中国文人用文字来书写心中壮志难酬的情感?
初读古诗,整体感知。 1.请同学们用自己喜欢的方式读古诗《四时田园杂兴》(其三十一)。要求借助拼音学会生字,把古诗读正确,读通顺。 2.指名多个学生朗读古诗,师生评议,纠正读得不准确的字音。尤其注意读准“昼、耘”的读音。指导读准多音字“供”([ gōng ]作动词时,准备着东西给需要的人应用:供应、供给(jǐ)、供求、供需、供销、提供、供不应求。[ góng ]奉献:供养、供献、供奉、供佛、供职;祭祀用的东西:供桌、供品、供果、上供;被审问时在法庭上述说事实:招供、口供、供状、供认、供词。)在诗中读四声。 3.把古诗反复多读几遍,通过查字典、问同学、问老师等方式,结合课文注释,理解诗句中词语的意思,用自己的话说说这首诗大体写了什么。记下不理解的地方和不明白的问题。 4.学生自愿举手发言,其他同学进行评议,也可以做补充发言。全班交流,教师相机引导并小结。
在入情入境中诵读成韵 1.配乐范读,想象画面: (1)学生边看插图边听老师配乐朗读,想象诗中所描绘的画面。 (2)学生自由交流想象中的画面,老师激励小结。 预设:山坡上的小草发芽了,嫩绿嫩绿的。黄莺在空中飞来飞去。河堤旁的柳条发芽了,几个下朋友放学回来,趁着东风,赶忙放起了风筝…… 2.借助插图,启发想象:黄莺一边飞一边干什么?(叽叽喳喳地叫)它好像在说什么? 再次启发想象:春风轻轻地吹来,柳条会怎样呢?(轻轻摆动,好像在跳舞陶醉在了美丽的春色里……) 诗人高鼎看到这样的景致写下了这样的诗句:出示“草长莺飞二月天,拂堤杨柳醉春烟”。(学生齐读) 让我们想象着春天的美丽景色,有滋有味地诵读。学生练读、指名读、引读。 3.联系生活,换位体验,:在这样美妙的春光里,沐浴着和煦的春风,(出示儿童放纸鸢图片)孩子们放起风筝,你们放过风筝吗?你放风筝时是怎样的心情?(学生自由发言)
第四十一条用人单位违反本条例规定不办理劳动用工备案的,由县级以上人民政府人力资源和社会保障部门责令改正;拒不改正的,按照劳动保障监察条例第三十条的规定予以处罚。第四十二条劳务派遣单位和用工单位违反本条例规定的,由人力资源和社会保障部门依照劳动合同法第九十二条和劳动合同法实施条例第三十五条的规定予以处罚。
五,社会保险和福利待遇 一甲乙双方应依法参加社会保险,甲方应每月从乙方工资中代扣代缴乙方个人应当缴纳的各项社会保险费. 二其它福利待遇: 六,劳动保护,劳动条件和职业危害防护 一甲方按国家和省有关劳动保护规定提供符合国家劳动卫生标准的劳动作业场所,切实保护乙方在生产工作中的安全和健康.如乙方工作过程中可能产生职业病危害,甲方应如实告知乙方,并按《职业病防治法》的规定保护乙方的健康及其相关权益. 二甲方根据乙方从事的工作岗位,按国家有关规定,发给乙方必要的劳动保护用品. 三甲方按照国家,省和当地的有关规定,做好女职工的劳动保护和保健工作. 四乙方患职业病,因工负伤或者因工死亡的,甲方应按《工伤保险条例》,《广东省劳动合同管理规定》等规定办理.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。