提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

中班科学课件教案:哪个压得深

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 双曲线及其标准方程教学设计人教A版高中数学选择性必修第一册

    双曲线及其标准方程教学设计人教A版高中数学选择性必修第一册

    ∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

  • 人教版高中数学选修3分类加法计数原理与分步乘法计数原理(1)教学设计

    人教版高中数学选修3分类加法计数原理与分步乘法计数原理(1)教学设计

    问题1. 用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?因为英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出26+10=36种不同的号码.问题2.你能说说这个问题的特征吗?上述计数过程的基本环节是:(1)确定分类标准,根据问题条件分为字母号码和数字号码两类;(2)分别计算各类号码的个数;(3)各类号码的个数相加,得出所有号码的个数.你能举出一些生活中类似的例子吗?一般地,有如下分类加法计数原理:完成一件事,有两类办法. 在第1类办法中有m种不同的方法,在第2类方法中有n种不同的方法,则完成这件事共有:N= m+n种不同的方法.二、典例解析例1.在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,如表,

  • 人教版高中数学选修3分类加法计数原理与分步乘法计数原理(2)教学设计

    人教版高中数学选修3分类加法计数原理与分步乘法计数原理(2)教学设计

    当A,C颜色相同时,先染P有4种方法,再染A,C有3种方法,然后染B有2种方法,最后染D也有2种方法.根据分步乘法计数原理知,共有4×3×2×2=48(种)方法;当A,C颜色不相同时,先染P有4种方法,再染A有3种方法,然后染C有2种方法,最后染B,D都有1种方法.根据分步乘法计数原理知,共有4×3×2×1×1=24(种)方法.综上,共有48+24=72(种)方法.故选B.答案:B5.某艺术小组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?解:由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人记为甲),只会钢琴的有6人,只会小号的有2人.把从中选出会钢琴与会小号各1人的方法分为两类.第1类,甲入选,另1人只需从其他8人中任选1人,故这类选法共8种;第2类,甲不入选,则会钢琴的只能从6个只会钢琴的人中选出,有6种不同的选法,会小号的也只能从只会小号的2人中选出,有2种不同的选法,所以这类选法共有6×2=12(种).因此共有8+12=20(种)不同的选法.

  • 在农产品(食品)深加工高成长企业产品推荐启动活动上的致辞讲话发言

    在农产品(食品)深加工高成长企业产品推荐启动活动上的致辞讲话发言

    在经济社会跨越发展的同时,这些年,x农业发展也呈现出乘风破浪、阔步前行的良好态势。2020年全省农业增加值增长x%,由全国第x位上升到第x位。我到x工作半年多,深刻感到x既是“美丽公园省”,也是“美食大观园”,真切感受到x农产品和特色食品等“x货”的独特魅力。可以说,“x货”是x自然风光、民族风情、特色风物的完美结晶和集大成者,今天集中推荐展示的x个单品、x个企业及x个公共品牌是“x货”的名优产品和优强品牌。

  • 食品生产环节预防食品安全突发事件应急预案

    食品生产环节预防食品安全突发事件应急预案

    二、应急处理措施(突发事件发生后,应严格按以下步骤处理):1、各企业食品安全管理员要切实负起责任,严密监视,信息灵通,发现问题,及时报告。2、接到食品生产环节食品安全突发事件报告后领导小组及时商议派人60分钟到达事发现场,立即处置。3、保护现场,展开调查,依法取证,组织分析讨论事发原因;及时报告上级主管领导和相关部门;4、协助医疗卫生机构救治病人;

  • “全国中小学生安全教育日”国旗下讲话稿:我的安全我能行

    “全国中小学生安全教育日”国旗下讲话稿:我的安全我能行

    尊敬的老师、亲爱的同学们:大家早上好!大家知道今天是什么日子吗?今天是第20个“全国中小学生安全教育日“。从1996年起,我们国家确定每年3月份最后一周的星期一为“全国中小学生安全教育日”。今年的安全教育主题是“我安全、我健康、我快乐”。这一周也是第8个“福建省学校安全教育周“。今天我国旗下讲话的题目就是“我的安全我能行”。校园是人员密集的场所,校园安全关系到每个家庭的幸福。因此,创建平安校园是每一名老师和同学的共同心愿。大家还记得,XX年9月26日下午,昆明市北京路明通小学发生一起踩踏事故,造成学生6人死亡、26人受伤。事情的起因是头一天下午,该小学体育老师将两块体育教学使用的海绵垫子临时靠墙放置于学生午休宿舍楼一楼单元过道处。26日14时许,学校起床铃拉响后,该小学一、二年级午休学生起床后返回教室上课,由于靠墙的一块海绵垫平倒于一楼过道,造成通道不畅,先期下楼的学生在通过海绵垫时发生跌倒,后续下楼的大量学生不清楚情况,继续向前拥挤造成相互叠加挤压,导致严重伤亡。专家研究和实践证明:通过安全教育,强化安全管理,提高广大师生的自我保护能力,80%的意外伤害是完全可以避免的。

  • 教师在XX中学暑期师德师风专项巡查和整治工作总结

    教师在XX中学暑期师德师风专项巡查和整治工作总结

    学校还设立举报箱公布举报热线暑期安排值班人员及时收集有关教师师德师风情况的反馈息。从多角度、多渠道强化师德师风建设每位教师都受社会和人民的监督。五、严格查处有偿家教根据教育局规定严禁教师从事有偿家教。除了会议上多次强调以外我校教师还签订“关于拒有偿家教”的承诺书。同时师德师风专项巡查和整治领导小组利用暑假期间不定期深入群众中去通过走访调查、实地考察等途径实时掌握我校教师是否存在“有偿家教”的问题一经发现及时制止并汇报教育局。至今止我校并未发现有师从事有偿补课的现象。总之通过狠抓师德师风建设工作使学校教师深深体会到只有制度完善、强过程管理发现问题及时处理才能证师德建设有成效。这次暑期师德师风专项巡查和整治以法制学习教育和组织教师进行自查依托以“以法治校”的制度管理、科学评估、重在激励手段形成良好的教师队伍树立教师的职业道德形象。

  • 《花的学校》说课稿

    《花的学校》说课稿

    鼓励学生自读课文,划出生字词,标出小结,进行质疑。旨在引导学生对“课文中不理解的地方提出疑问”,引导学生抓住要点、抓住关键提出有价值的问题,这种质疑能力对学生的阅读水平的提高具有重要的作用。

  • 《小狗学叫》说课稿

    《小狗学叫》说课稿

    你见过小狗学叫吗?作者贾尼?罗大里编写新时代出版社出版一本书籍的题目就是——《小狗学叫》,经过改编后作文课文被编排进了三年级上册语文课本。也就是我们今天要学习的课文。

  • 《花的学校》说课稿

    《花的学校》说课稿

    教学目标:1.知识目标:会写本课生字,正确认读生字。正确、流利、有感情地朗读课文,默读课文,能对课文中不理解的地方提出疑问。2.能力目标:理解课文内容,体会课文富于童真童趣的语言和丰富细腻的想像,培养学生的质疑、表达、想象能力

  • 学做快乐鸟 说课稿

    学做快乐鸟 说课稿

    尊敬的各位评委老师,大家好!我说课的题目是小学道德与法治二年级下册《挑战第一次》。下面我将从教材分析、学情分析、教学目标与重难点、教法与学法、教学过程、板书设计6个方面进行说课。一、教材分析《学做快乐鸟》是统编教材小学《道德与法治》二年级下册第一单元第2课,共有四个话题,本节课学习的是前两个话题《我很快乐》和《也有不开心的事》,主要是引导学生发现生活中的快乐,知道遇到不开心的事是生活中常有的事,学会面对、接纳生活中的不快乐,旨在引导学生过愉快积极的生活。二、学情分析二年级的孩子已经有了比较丰富的情绪体验,愉快积极的情绪在他们的生活中占主导地位,但生活中也有不开心的事,他们也得面对属于自己的烦恼。因此,要通过有效的教学,帮助引导学生形成健康、积极、乐观的生活态度。三、教学目标与重难点基于教材、学情的分析,以及对小学道德与法治课程的理解,我确定了本节课的教学目标与重难点。教学目标我确定了三个。1. 说出自己快乐的事,感受快乐带来的身心愉悦。2. 知道生活中也会有不开心的事,明白这是正常现象。3. 学会接纳生活中的不快乐。教学重点是:引导学生发现生活中的快乐,知道遇到不开心的事也是正常现象。

  • 同学相伴 说课稿

    同学相伴 说课稿

    尊敬的各位评委老师,大家好!我说课的题目是小学道德与法治三年级下册《同学相伴》。下面 我将从教材分析、学情分析、教学目标与重难点、教法与学法、教学 过程、板书设计 6 个方面进行说课。一、教材分析《同学相伴》是统编教材小学《道德与法治》三年级下册第一单 元第 4 课,共有两个话题,本节课学习的是第一个话题《同学相伴的 快乐》,主要是引导学生体会同学在一起共同游戏、共同生活中的快乐,旨在引导学生愿意与同伴在一起,体会乐群的意义。 二、学情分析三年级的学生在两年半的校园生活中,在与同学相伴方面,已经积累了较多的生活经验和体验,但他们还不能从理性上理解共同生活对于个体的意义。因此,要通过有效的教学,帮助引导学生体会同学相伴的快乐和乐群的意义。三、教学目标与重难点 基于教材、学情的分析,以及对小学道德与法治课程的理解,我确定了本节课的教学目标与重难点。教学目标我确定了三个。1. 体会同学相伴的快乐。2. 懂得同学相伴的重要性。3. 乐于在生活中与同学合作、分享。教学重点是:体会同学相伴的快乐和乐群的意义。难点是:体会共同生活对于个体的意义。

  • 学会尊重 说课稿

    学会尊重 说课稿

    尊敬的各位评委、老师,大家好,今天我说课的题目是《学会尊重》(板书课题)下面我将从说教材、说教法、说教学过程、说板书设计四个方面来对本课作具体阐述。一、说教材部编版六年级上册第一单元《完善自我,健康成长》以“养成交往品德”为主题展开,着重培养学生尊重、宽容、自省的美德,学生通过对三种道德规则的践行并不断塑造思想、道德、人格,完成个人的社会化过程,进一步融入社会公共生活之中。《学会尊重》是第一课的内容。尊重是中华民族上千年来的传统美德,是中华民族文化的积淀。它是一座桥梁,在人与人之间传递着信任与爱。每个人都有一定的自尊心,要想获得他人的尊重,必须先学会尊重他人。要做到人与人之间和谐相处,就从心怀“尊重自己、尊重他人”开始。学情分析道德与法治是以儿童社会生活为基础,促进学生良好品德形成和社会性发展的综合课程。本课教学对象是小学六年级的学生,已经具备搜集和整理资料的能力,能够用自己的方法筛选和整理资料。从学生的社会生活环境看,学生对于“尊重”有一定了解,能初步感受尊重对与人和谐相处的重要意义。但落实到日常的行为细节中,对于尊重自己、尊重他人还缺乏深入的思考,没有较深层次的理解。

  • 学会宽容 说课稿

    学会宽容 说课稿

    说教材本课是人教版道德与法治六年级下册第一单元第2课学会宽容的最后一个课时。本课旨在通过案例分析、活动体验等引导学生接纳不同、包容差异,同时也注重对前两课时的总结、应用与拓展。第二课的前两课时中涉及到的宽容的意义、限度和原则等,都为本课做了良好的铺垫。学情分析六年级学生不仅身体和心理迎来了新的发展高峰,而且社会性发展的,道德发展也进入了一个新的阶段,在这个新的成长时期中,帮助学生树立完善自我的观念,对学生的健康成长具有长久意义。六年级学生人际交往的范围已经从家庭、学校、社区扩展到了社会生活,已经初步具有一些与其他社会成员打交道的经验,对国内、国际事件也产生关注的兴趣。帮助其学习尊重、宽容的基本人际交往品质,有助于其更好的理解社会、融入社会。根据新课标和本课的教学内容与特点,结合学情,我设定了本课时的教学目标:1.懂得宽容的意义,养成友爱宽容的品质,进一步完善自我,促进健康成长。2.学会如何拥有一颗宽容的心,明白宽容但和而不同。能运用恰当的方法分析说明问题。为了落实本课时的教学目标,我将教学重难点设定如下:教学重点:懂得宽容的意义,学会如何宽容。教学难点:明白宽容但和而不同。

上一页123...324325326327328329330331332333334335下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。