黄伯说,你哥哥呀,是个好小伙。有一次呀,我搬个液化气罐,从自行车上拿下来,往房间里搬,但在卸下来的时候,我一个人没办法弄。你哥哥看到了,从老远的地方跑过来,还喊着,黄伯,等等,我来……你哥哥到了后,帮我扶住了自行车,让我可以把液化气罐拿下来,我和你哥哥说谢谢,你哥哥笑笑说,不用客气的。
为了遏制它们的狂野行为,当地政府制订了预防大象事故的紧急计划。用无人机跟踪它们的动向,疏散被这些动物“拜访”的居住地居民,设置紧急屏障,甚至为它们保留了18吨食物。但是,警报器和卡车也无法转移这群奇特的“徒步旅行者”的行动方向。它们依然故我,在人们惊奇的目光中继续前行。刚开始,人们认为这群大象只是偶然越界,或许用不了多久就会本能地返回传统栖息地。但象群显然不这么想,无论人类如何追踪堵截,放食引诱,它们都不为所动,坚持北上,一路走州过府,直趋昆明城下。跟踪象群的人们惊讶地发现,这些动物造成的经济损失,其价值已经接近千万元人民币。
常言道“话说三遍淡如水”,一般的话多说几遍人就要烦。但经典的话人们一遍遍地说,一代代地说;经典的书,人们一遍遍地读,一代代地读。不但文字的经典是这样,就是音乐、绘画等一切艺术品都是这样。一首好歌,人们会不厌其烦地唱;一首好曲子人们会不厌其烦地听:一幅好字画挂在墙上,天天看不够。
有一天,人们意料之中发现,稻穗腼腆地探出头来。不久,稻穗上挂满了细密的稻花。在人们眼中,稻花是世界上最香、最美丽的花儿。人们站在田埂上,面对田野,深深地呼吸着空气中的芬芳,在心里描画着一个金色的童话世界。可是,人们怕水肥不济,怕阳光不足,怕遗受病害,怕辜负了稻花的香气,他们天天忙活个不停,像看护孩子一般,看护着稻们。
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
教师姓名 课程名称数学班 级 授课日期 授课顺序 章节名称§2.1 不等式的基本性质教 学 目 标知识目标:1、理解不等式的概念 2、掌握不等式的基本性质 技能目标:1、会比较两个数的大小 2、会用做差法比较两个整式的大小 情感目标:体会不等式在日常生活中的应用,感受数学的有用性教学 重点 和 难点 重点: 不等式的概念和基本性质 难点: 1、会比较两个整式的大小 2、能根据应用题的表述,列出相应的表达式教 学 资 源《数学》(第一册) 多媒体课件评 估 反 馈课堂提问 课堂练习作 业习题2.1课后记
2、通过对故事的欣赏,感受春天的美丽景色,体验与好朋友相亲相爱在一起的情感。 活动重点:感受朋友间相亲相爱的友好情感。 活动难点:能尝试运用对称的方法进行装饰蝴蝶。 活动准备:纸剪的各色花朵,范例,幼儿绘画工具,固体胶等。
①人们在吃饱穿暖之后,知道了要储蓄,以便在需要的时候支取它、借助它走出困境。每当我清点一张张金额不大但令人鼓舞的存单时,心里就有一种感悟:人生,不也是储蓄吗?②一个人呱呱附地,便开始储蓄亲情。这一储蓄会伴随他或她走过一生。他们所储蓄的,是一种血肉相连的情感。是一笔超越时空的财富,无论离得多远,隔得多久都可以随意支取和享用它们。有了亲情这笔储蓄,即使在物质上很贫困,精神上却是富有的,而不懂得或丢失了亲情的储蓄,无异于泯灭了本性和良心。③友情,也是人生一笔受益匪浅的储蓄。这储蓄,是患难之中的倾囊相助,是错误路上的逆耳忠言,是跌倒时一把真诚的搀扶,是痛苦时抹去泪水的一缕春风。真正的友情储蓄,不是可以单向支取的,而要通过双方的积累加重分量。任何带功利性的友情储蓄,不仅得不到利息,而且连本钱也会丧失殆尽。
材料一: 天天6个月时被医院诊断得了咽炎并接受庆大霉素雾化治疗,整个治疗过程中,天天哭得很厉害,但护士却说没事,哭得越厉害吸入效果越好。10个月时,天天出现了异常,被医院诊断为双耳重度感音神经性耳聋,病因就是半岁时做的那次庆大霉素雾化治疗。 中国疾病预防控制中心传染病预防控制所所长徐建国近日直言:中国滥用抗生素情况已到了不容忽视阶段。
①李忠义是一个工人。 ②他没有值得炫耀的地方,活得也很艰难。他从小患有腿疾,走起路来一跛一跛的。个子不高,头发有些花白,近乎丑陋的脸上还有一块疤。因为腿疾,单位安排他当收发员,无非是分发报纸信件。李忠义是个闲不住的人,他把自己的本职工作做好后,就常到工地去转转。技术活他插不上手,可他总能找到自己能干的活儿:道路坑洼他去填平,排水沟堵了他去疏通,散落的砂石他细心地堆积成方,散放的管材他整理成行。他眼里总有活儿。夏日,酷暑难当,他主动去食堂帮厨,吃力地把解暑的绿豆汤担到工地,自己渴了却忍着不喝。冬日,他常常夜半巡夜,生怕工棚生火酿成事故。每天清晨大家走出工棚,总会看到皑皑雪地上,有一串串高低不平的足印。
秋夜的风一阵又一阵地袭击着阿斌单薄的身体,阿斌不由打个冷战,他借着月光顺着山沟吃力地穿过一条泥泞的土路,路的尽头,一棵高大的榕树下,趴着一栋石头和茅草垒成的小屋。 阿斌在屋前站定,喘一口气,正了正身子,轻轻叩响锈迹斑斑的门环。 少顷,伴随着沉重的“嘎吱”声,一个光光的小脑袋探出门外。
子墨子起,再拜,曰:“请说之。吾从北方闻子为梯,将以攻宋。宋何罪之有?荆国有余于地而不足于民,杀所不足而争所有余,不可谓智。宋无罪而攻之,不可谓仁。知而不争,不可谓忠。争而不得,不可谓强。义不杀少而杀众,不可谓知类。”
渡荆门送别李白 渡远荆门外,来从楚国游。山随平野尽,江入大荒流。 月下飞天镜,云生结海楼。仍怜故乡水,万里送行舟。
日前,2016年“数博会”在贵阳召开。此次“数博会”是贵州挂牌成为国家大数据产业综合实验区以来,首次举办的一次大数据交易、数字化产品展示、互联网技术交流的大型盛会。2014年起,大数据中心、呼叫中心先后落户贵州,伴随贵阳城区无线WiFi全覆盖的建成,让贵州从昔日工业时代的追随者,变成大数据时代的同行者,甚至是领跑者。据大数据中心的工作人员介绍,大数据是依托互联网优势,融合数据库资源、与计算技术、物联网技术而研发的大型数据交易中心。大数据存储容量特别大,预计未来全球存储总量将增至40ZB,即4000万亿亿字节;资源互为关联且覆盖面广;资源实时,更新快,最快可达1分钟,甚至几秒、几十秒的更新速度。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。