鱼,我所欲也;熊掌,亦我所欲也。二者不可得兼,舍鱼而取熊掌者也。生,亦我所欲也;义,亦我所欲也。二者不可得兼,舍生而取义者也。生亦我所欲,所欲有甚于生者,故不为苟得也
老师们、同学们:大家,早上好!今天我国旗下讲话的题目是:《写在高考、中考前》。很荣幸借这个机会,向刻苦学习、执着拼搏的全体同学,特别是临近高考、中考的毕业班同学们致以最诚挚、最亲切的问候!当我们还沉浸于春的喜悦时,初夏的芬芳与烂漫却已悄悄来临,时光真的太匆匆……高三初三的同学们,回首近三年来我们一起走过的仆仆风尘,我们是否无怨无悔?三年,在历史的长河中,只是一瞬,可是这三年对于你们这些在学习路上求索的人,它却是一个刻骨铭心的难忘历程。你们当中,有的曾是运动场上健儿,有的曾是学海中的骄子,有的曾是艺术节里的明星……这三年,记载着你们面对困惑时的坚韧、拥抱成功时的喜悦、铸就辉煌时的自豪。回首昨天,有太多的“家珍”可数;展望明天,我们重任在肩。6月7日——高考,6月16日——中考,时间屈指可数,剩下短短的在校时光弥足珍贵,它最容易被人忽视而又最容易令人后悔。苦读寒窗,即将决战中高考,亲爱的同学们,千万要谨记:十年磨一剑,剑出必破竹,切不可因一时的疏忽而功亏一篑,否则,那将是切肤之痛,终身之憾!
XX年高考前国旗下讲话稿:面对高考笑看人生各位老师、同学们:大家好!今天是XX年6月2日----星期一,它意味着,对于我们高三年的同学来讲,这一次升旗仪式是他们作为高中生涯参加的最后一次升旗仪式了:五天后他们就要奔赴高考的考场,去接受祖国的挑选,然后去到他们梦想的地方,也是祖国需要的地方,去学习,去工作,去圆自己的人生之梦!今天我们为即将步入高考考场的高三全体同学壮行,为他们助阵壮威!在此也提醒同学们面对高考:首先,要沉着冷静。现在的高考,考的不再仅仅是知识的再现,而是全面考查考生的能力、素养和意志耐力。因此,保持良好的心理状态,轻松和沉着冷静地解答问题,才能思维活跃,思路畅通。心浮气躁,难免乱了阵脚;沉着冷静,才能应对自如。其次,要细心谨慎。细心能够防止和纠正粗心大意造成的错误,尤其是笔误。做完试题要细心检查,防止题目漏做。
教学目标:知识与能力目标:1.能够借助三角函数的定义及单位圆推导出三角函数的诱导公式 2.能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角的三角函数的化简、求值问题情感目标:1.通过诱导公式的探求,培养学生的探索能力、钻研精神和科学态度 2.通过诱导公式探求工程中的合作学习,培养学生团结协作的精神; 3. 通过诱导公式的运用,培养学生的划归能力,提高学生分析问题和解决问题的能力。 一导入:二、自学(阅读教材第110---112页,回答下列问题) 在直角坐标系下,角的终边与圆心在原点的单位圆相交于,则,(一)终边相同的角:终边相同的角的 公式一:_______ ________________(二)关于轴的对称点的特征: 。对于角而言:角关于轴对称的角为_______公式二:__________ _________ _________
1.教学内容:本课是北师大版第三单元《分数》:《找最小公倍数》第一课时。是引导学生在自主参与、发现、归纳的基础上认识并建立并理解公倍数和最小公倍数的概念的过程。并总结归纳出一些找最小公倍数的方法。2.教材编写意图:五年级学生的生活经验和知识背景比较丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出两个数的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。(二)对教材的处理意见1.教材中让学生找4和6的倍数,进而引出公倍数和最小公倍数的概念,利于学生建立对概念的理解。
2、81页的做一做。做完后,引导学生观察4和8;16和32这一组的最大公因数的特点:当较大数是较小数的倍数时,他们的最大公因数是较小数。1和7;8和9这一组数的最大公因数只有1。这样的练习设计,目的是让学生发现求最大公因数中的特殊情况。四、迁移运用,拓展探究写出下列各分数分子和分母的最大公因数。7/21 8/28 16/40 6/15 目的是为下一节课《约分》做好了知识的铺垫。全课总结:通过今天的学习,你有什么收获?同桌互说,指名汇报。这样的总结,从知识的层面上做了一次回顾。并及时的总结了解学情,真正做到“堂堂清”五、说板书设计我本节课的板书设计力图全面而简明的将本课的内容传递给学生,便于学生理解和记忆。各位评委老师,我仅从教材、教法、学法、及教学过程、板书设计等几个方面对本课进行说明。这只是我预设的一种方案,但是课堂千变万化的生成效果,最终还要和学生、课堂相结合。说课的不足之处还请多多指教,我的说课到此结束,谢谢各位评委老师。
3、归纳求最小公倍数的方法。师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)4、看书88——89页,你还有什么问题?师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。三、解决问题,深化理解(练习是理解知识,掌握知识,形成技能的基本途径,又是运用知识,发展智能,完善认知结构的重要手段。
一、教材分析《民主监督:守望公共家园》是高一政治必修2第一单元第二课第四框题。在此之前,学生们已经学习了公民所享有的政治权利和自由,了解到公民享有监督权,这为过渡到本框题的学习起到了铺垫的作用。本框题承接了教材第一课“公民的政治权利和自由”这部分内容,又为后面第四课“权力的行使:需要监督”的学习埋下伏笔。所以学好这个框题为学好以后的政治常识打下牢固的基础,而且它在整个教材中也起到了承上启下的作用。二、教学目标(一)知识目标1、识记公民的民主监督权利、作用2、理解公民的民主监督的重要性。3、学会分析如何行使监督权(二)能力目标通过学习逐步形成民主监督能力。(三)情感、态度与价值观目标通过学习培养学生主人翁责任感。三、教学重点难点重点:公民的民主监督权利、作用、重要性。难点:民主监督的重要性
设计目的:通过学生的反馈练习,使教师能全面了解学生对公因式概念的理解是否到位,提取公因式的方法与步骤是否掌握,以便教师能及时地进行查缺补漏.但依然有部分同学会出现问题,如对首项出现负号时不能正确处理,此时,需要老师进一步引导.第四环节 课堂小结从今天的课程中,你学到了哪些知识?你认为提公因式法与单项式乘多项式有什么关系?怎样用提公因式法分解因式?设计目的:通过学生的回顾与反思,强化学生对确定公因式的方法及提公因式法的步骤的理解,进一步清楚地了解提公因式法与单项式乘多项式的互逆关系,加深对类比的数学思想的理解。第五环节 当堂检测把下列各式分解因式(1)2x2-4x (2)8m2n+2mn(3)-4a3b3+6a2b-2ab (4)2n2-mn-n*(5)3an+1-2anc-7an+2设计目的:检验学生的目标达成情况,其中第五小题供学有余力的学生选作。第六环节 课后反思教学反思
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).解析:(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.解:(1)因式分解的方法是提公因式法,共应用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需应用上述方法2016次,结果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法总结:解决此类问题需要认真阅读,理解题意,根据已知得出分解因式的规律是解题关键.三、板书设计1.提公因式分解因式的一般步骤:(1)观察;(2)适当变形;(3)确定公因式;(4)提取公因式.2.提公因式法因式分解的应用本课时是在上一课时的基础上进行的拓展延伸,在教学时要给学生足够主动权和思考空间,突出学生在课堂上的主体地位,引导和鼓励学生自主探究,在培养学生创新能力的同时提高学生的逻辑思维能力.
解析:(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.15,进而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.三、板书设计1.公因式多项式各项都含有的相同因式叫这个多项式各项的公因式.2.提公因式法如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种因式分解的方法叫做提公因式法.本节中要给学生留出自主学习的空间,然后引入稍有层次的例题,让学生进一步感受因式分解与整式的乘法是逆过程,从而可用整式的乘法检查错误.本节课在对例题的探究上,提倡引导学生合作交流,使学生发挥群体的力量,以此提高教学效果.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.三、板书设计用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步骤①化为一般形式②确定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判别式经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解求根公式的基础.通过对求根公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.体会数式通性,感受数学的严谨性和数学结论的确定性.提高学生的运算能力,并养成良好的运算习惯.
二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况
二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况
易错提醒:利用b2-4ac判断一元二次方程根的情况时,容易忽略二次项系数不能等于0这一条件,本题中容易误选A.【类型三】 根的判别式与三角形的综合应用已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有两个相等的实数根,请判断△ABC的形状.解析:先将方程转化为一般形式,再根据根的判别式确定a,b,c之间的关系,即可判定△ABC的形状.解:将原方程转化为一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有两个相等的实数根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.
居住在中华人民共和国境内的年满十六周岁的中国公民,应当依照本法的规定申请领取居民身份证:未满十六周岁的中国公民,可以依照本法的规定申请领取居民身份证。居民身份证登记的项目包括:姓名、性别、民族、出生年月、常住户口所在地住址、公民身份号码、本人相片、证件的有效期和签发机关。公民身份证号码是每个公民唯一的、终身不变的身份代码,有公安机关按照公民身份号码国家标准编制。身份证是我国目前唯一的法定个人身份证件,将来要注意妥善保管好自己的身份证,不要随意借给他人使用。【设计意图:给学生渗透法制教育,让他们意识到身份证的重要性,要妥善保管好身份证,不能轻易的借给别人。】5、教师提问:在生活中哪些地方会用到居民身份证?学生回答。【设计意图:让学生体会数学与生活的紧密联系。】
二、2024年工作打算(一)推动完善公司治理和内控体系建设结合国企改革三年行动成果,加快推进公司标准化、合规化和现代化建设体系,确保各项改革举措落地落实。(二)推动业务拓展力度持续推进X信公司与省农担的战略合作,进一步完善业务流程和工作指引,深入乡镇抓好业务推介,加大担保产品开发,拓宽金融机构合作范围。(三)推动非融资担保业务开展积极协调相关部门配合开展应付款项、诉讼保全、工程履约及民工工资履约等担保业务,构建“政、银、企、担”全链条融资担保模式,加快拓展公司非融资担保业务。(四)推动应急转贷业务开展积极推进建立应急转贷业务资金池,完善应急转贷资金的管理使用办法,切实解决县域中小微企业和“三农主体”“转贷难”、“转贷贵”的问题。(五)推动化解公司面临困境积极争取县委、县政府及县级部门的支持,研究并制定切实可行的方案,全面解决X森公司遗留问题,做强做大X森公司,重启与县内各大金融机构的合作,充分发挥融担功能更好服务于县域经济。
(四)持续激发片区活力,开创新局面。一是进一步坚持目标导向。结合片区特色亮点,紧扣片区定位和重大项目布局,聚力攻坚片区主导方向,全力配合片区搞好基础设施建设。二是进一步压实工作责任。立足重点片区工作实际,全面梳理“四考”(新增项目、新增入库、土地出让、集中开工)“三单”(基础设施建设清单、产业项目帮扶清单、招商引资项目清单),进一步完善考评细则,以年终绩效考核为抓手压实目标责任,以考核见真章,以考核促实效,充分激发十大重点片区比学赶超、奋勇争先的干劲。三是进一步强化协调调度。坚持目标导向与问题导向相统一,主动跟踪服务,对重点片区道路建设、招商引资、土地出让、流程审批、控规修编等方面存在的问题,分层级有序调度,逐个项目研究、逐个问题破解,稳步推进,推动项目早落地、早开工、早投产、早入库、早增效。志之所趋,无远弗届;志之所向,无坚不入。站在新的起点上,我们将保持发展定力,增强自身能力,坚定凝心聚力谋发展的决心不动摇,乘势而上开新局,砥砺奋进开新篇,为全面建设全国一流现代化强区,奋力谱写中国式现代化的我区篇章贡献更大公建力量。
四、下半年工作计划(一)加快项目施工进度。邝庄一期地块计划2024年10月31日完成竣工验收并交付使用。邝庄C区河西2地块计划计划2024年10月30日完成竣工验收并交付使用,邝庄C区计划2024年12月30日完成竣工验收并交付使用。邝庄区03、04地块计划2024年12月30日完成竣工验收并交付使用。睿智小区B地块计划2024年10月30日完成竣工验收并交付使用。(二)推动主营业务做优做强。一是房地产业务,国控房地产营销公司与国控政和营销中心共同发力,持续推进剩余房产和商业去化。二是新能源业务,完成下半年光伏发电任务586万度,做好“三无小区”充电桩的运营管理工作,完成光伏整县推进企业对接工作。按照xx市冬季清洁取暖工作要求,开展市场宣传和项目实施,年内完成新增50万平方供暖面积目标任务。三是物业管理,做好项目现场运营管理和品质提升的同时,努力提升业主满意度。
(三)场内场外“两场联动”,全力维护交易市场秩序。一是完善投诉举报接收、转办、反馈工作机制。电子监管平台实现投诉举报全流程电子化在线办理,平台将收到的投诉质疑和相关线索第一时间转送各行业监管部门,质疑事项应于受理之日起7个工作日内作出书面答复,投诉、举报事项原则上应于受理之日起15个工作日内办理完毕,并书面答复事项提出人,如未按时限和要求完成答复,平台将会推送至各单位纪检组处,最终的答复事项在中心网站和各行业部门网站予以公示,完成“发现-监管-公示”的闭环管理。各行业部门按照职能职责制定投诉举报机制,明确处理结果反馈时限,并按时反馈办理结果,做到及时受理、限时办结、按时反馈。二是建立问题和线索联动处理机制。建立监管协同工作台和虚拟联席办公厅,实现所有部门之间都能实时或定点定向协同办公,完成案件资料共享、案件同步分析、办案协助、联席会办,形成多部门大监管格局。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。