经甲乙双方充分协商,就乙方委托甲方制作 事宜达成如下协议:一、项目名称: 二、制作工艺、数量和其他项目 材料 规格 数量 金额 备注合计 三、合同总金额:人民币 (¥ 元)四、完成时间: 年 月 日前完成制作安装并交乙方进行验收。五、结算方式:乙方先付甲方订金 元,甲方应开具收据给乙方。甲方按乙方要求在规定时间内严格按报价工艺完成相关物料的成品制作、安装并交乙方进行验收。在乙方验收合格后,乙方凭甲方开具的收据一次性付清本合同尾款,共人民币 元(¥ )。六、双方权利及义务:1、乙方必须按合同时间付款,逾期未付款者,每逾期一日,乙方按应付款的千分之五(5‰)收取违约金,直至所有款项付清为止。2、乙方提供的样版、设计图等不够清晰,规格不符,甲方已要求更改,但乙方没有更改而按样品做出产品时,一切责任由乙方承担。
根据中华人民共和国有关法律、法规的规定,甲、乙双方在平等自愿的基础上,经友好协商,就甲方委托乙方策划、执行“ ”一事,达成一致意见,特签订本合同,以资信守。1、活动内容1.1.活动名称: 1.2.活动日期: 1.3.活动时间:;1.4.活动地点:;2、合作内容及方式2.1. 物料清单:(详见费用预算表)2.2. 承办总费用:费用合计:人民币 元整(¥ 元)。该费用为含税价。2.3. 费用支付:2.3.1.以支票形式一次性支付乙方合同总金额人民币 元整(¥ 元)。2.3.2.现场临时缩减或追加的制作、物料等相应费用的减少或增加,由双方活动负责人协调解决,以确认单或补充协议的方式现场确认,并作为支付费用的凭证。2.3.3. 协议签订后,任何一方不得中途终止合约,否则,其损失由违约方负责。如遇不可抗力因素影响(如自然灾害、政府要求等),由甲乙双方根据现场情况决定是否取消或延期。
2、发展幼儿身体动作的协调性,增强幼儿的体质。3、通过游戏引导幼儿走过平衡木、渡过攀岩墙,发展幼儿平衡、攀爬、协调等基本动作。 游戏准备:攀岩墙一面、平衡木一条、荡木一条、跳绳两根、大皮球若干。
中国有句古话叫习惯成自然。好的习惯,会让我们工作起来有条理,也会让人觉得你这个很靠谱。一是养成汇报的习惯。只要是领导交待给的事情,无论事情大小,这都是公家的事情,就需要多请示、多汇报、多见面。一来可以听听领导的想法,给我们把把脉,确保方向不出现偏差,二来可以让领导了解我们青年干部的想法,减少代沟,增加共识。二是养成做计划的习惯。每天给自己制定一个小的目标,计划好今天要完成的事情,这样不仅可以知道每天要做些什么、做了些什么,还可以对工作进行有效控制。这样坚持一段时间,就会发现,拖延症能够有效缓解,计划的工作基本能如期完成,工作效果也会非常明显,工作给我们带来的成就感也容易获得。三是养成注重细节的习惯。比如收到的工作信息第一时间回复;外出培训制定交接清单、给对口市局的人员请假;打电话等对方挂了之后自己再挂等等。这些都是细节方面的问题,但往往细节决定成败,需要我们在工作中多加留心、多加注意。
1.让学生拿出长方体摸一摸,问:你有什么感觉?摸的的面是什么形状?师:谁来摸一摸,老师手上长方体的长方形在哪?(学生找出长方形)2.让学生在自己的学具(长方体、正方体、圆柱体)上找图形,并和小组里的同学说一说。3、指名说,教师把学生找到的图形从立体图形上分离出来,贴于黑板上,师:这些图形是物体上的一个面,这就是我们今天要认识的图形。(板书课题——认识平面图形)4.让学生说说:从什么物体上找到了什么图形?5.师:你能想办法把这些形状画到一张纸上吗?请学生演示各自不同的方法,然后教师在黑板上沿长方体的一个面画出长方形。师:你会画吗?请小朋友们用自己喜欢的办法画出并剪出长方形、正方形、圆和三角形各2个。
1、创设情境,激趣导入。通过有趣的机器人引出学生对几何体的初步感知。使学生的注意力马上集中起来,学习的兴趣被激发,学生强烈渴望进入下面的学习。2、我接着请同学们动手分一分,使学生初步认识长方体、正方体、圆柱、球,知道它们的名称。并用已有的生活经验给几何体命名,再一次调动了大部分学生的学习兴致。3、游戏“我说你摸”“搭一撘”的目的,是为了让学生由实物抽象出形状图形,培养学生抽象能力,在由形状说出生活中是这种形状的实物的练习活动。游戏,不仅可以激发学生的学习兴趣,也可进一步培养学生的空间观念。并能感受复杂物体的形状与简单几何体之间的联系。4、内容小结,巩固新知通过这节课的学习,和学生一起回顾这节课我们认识了哪些物体。既是学生对这节课知识的自我整理,同时又考查学生对知识的掌握程度。也是对学生言语表达能力的培养。
(二)师生互动,认识长方形、正方形、三角形和圆。1、学生拿出准备好的学具(长方形、正方形、等)亲自动手实践,摸一摸、看一看,并在纸上描画这些物体的面,比一比哪个小组的同学画得最好。2、分组讨论,教师巡视3、全班交流,展示作品,根据学生的交流,师生共同得出结论,长方体画出的是长方形,正方体画出的是正方形,三角锥画出的是三角形,圆柱画出的是圆。4、联系生活说一说,清学生说一说生活中见到哪些物体的面是长方形、正方形、三角形和圆。(三)巩固练习用准备好的学具(若干个)拼出自己喜欢的图案,看哪个小组在规定的时间内拼得图案最多最美。1、小组活动。2、各个小组展示自己的作品。3、小组评价,选出优胜品。师选出几个有代表性的作品,让学生分析它是由什么图形组成。
接着引导学生进一步思考截面可不可以是特殊的三角形:等腰三角形和等边三角形。教师用课件演示切截过程,展示切截位置的变化引起截面形状的变化,图形特殊化。使学生的思考经历由一般到特殊的过程。2.截面是其他形状学生先猜想正方体的截面还有可能是什么形状,再利用实验操作型课件对正方体进行无限次的切截,让学生在无限次切截的过程中体会截面产生和变化的整个过程,发现截面产生和变化的规律。学生从切截活动中发现猜想时没有想到的截面图形,体会到探索的乐趣。教师再引导学生归纳正方体截面边数的规律。学生的认知得到升华。接着引导学生归纳截面形状中的特殊四边形。二.圆柱体和圆锥体的截面学生先猜想圆柱体的截面可能是什么形状,教师利用实验操作型课件对圆柱体进行无限次的切截,学生观察截面形状。
解析:当截面与轴截面平行时,得到的截面的形状为长方形;当截面与轴截面斜交时,得到的截面的形状是椭圆;当截面与轴截面垂直时,得到的截面的形状是圆,所以截面的形状不可能是三角形.故选A.方法总结:用平面去截圆柱时,常见的截面有圆、椭圆、长方形、类似于梯形、类似于拱形等.探究点三:截圆锥问题一竖直平面经过圆锥的顶点截圆锥,所得到的截面形状与下图中相同的是()解析:经过圆锥顶点的平面与圆锥的侧面和底面截得的都是一条线.如图,由图可知得到的截面是一个等腰三角形.故选B.方法总结:用平面去截圆锥,截面的形状可能是三角形、圆、椭圆等.三、板书设计教学过程中,强调学生自主探索和合作交流,经历操作、抽象、归纳、积累等思维过程,从中获得数学知识与技能,发展空间观念和动手操作能力,同时升华学生的情感态度和价值观.
[例3]、用一个平面去截一个几何体,截面形状有圆、三角形,那么这个几何体可能是_________。四、巩固强化:1、一个正方体的截面不可能是( )A、三角形 B、梯形 C、五边形 D、七边形2、用一个平面去截五棱柱,边数最多的截面是_______形.3*、用一个平面去截几何体,若截面是三角形,这个几何体可能是__________________________________________________.4*、用一个平面截一个几何体,如果截面是圆,你能想象出原来的几何体可能是什么吗?如虹截面是三角形呢?5*、如果用一个平面截一个正方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?6*、几何体中的圆台、棱锥都是课外介绍的,所以我们就在这个栏目里继续为大家介绍这两种几何体的截面.(1)圆台用平面截圆台,截面形状会有_____和_______这两种较特殊图形,截法如下:
一、说教材该内容是人教版小学数学四年级第八册第四单元的最后一个内容,是在学生已经掌握了把整万、整亿数改写成用万或亿作单位的数的基础上进行教学的。通过本节课的学习,要使学生能通过独立思考、合作交流,掌握把大数目改写成用“万”或“亿”作单位的数的方法,为以后能准确、恰当地运用数目描述生活现象打下良好的基础。根据本课的内容和学生已有的知识和心理特征,我制订如下教学目标:1、掌握把较大数改写成用“万”或“亿”作单位的数的方法,并能根据要求保留一定的小数位数。2、经历将一个数改写成用“万”或“亿”作单位的数的过程,体验数据记法的多样性。3、感受数学知识的应用性。理解和掌握把较大的数改写成用“万”或“亿”作单位的小数的方法是本课的教学重点。位数不够用0补足是本节课的难点。
“拱一拱手,一屁股就坐在上席”,两个动作活画出了夏总甲在乡民面前的傲慢自大。作者接着写他的一番话语:“俺如今倒不如你们务农的快活了。想这新年大节,老爷衙门里,三班六房,那一位不送帖子来。我怎好不去贺节?每日骑着这个驴,上县下乡,跑得昏头晕脑。”“从新年这七八日,何曾得一个闲?恨不得长出两张嘴来,还吃不退。”巧妙地揭示了他为何目中无人和衣服“就如酒篓一般”。二、通过故事情节的前后对比来表达讽刺。第二回中,周进六十多岁了,还以老童生的身份在薛家集观音庵教私塾,一年才十二两馆银,生活窘困,地位低下,村中新中秀才青年梅玖也奚落他。到第七回中,周进中了进士,做了官以后,梅玖就无耻地冒充自己是周进的学生,薛家集的观音庵里也供起了周进的长生牌位。梅玖见了周进早年写的一副对联,贴在墙上,红纸都发白了,竟吩咐和尚用水喷了,剥下来装裱收藏。这一对比既写出了周进做官前后迥然不同的境遇,也写出了秀才梅玖的庸俗势利以及社会上一些人的趋炎附势。所以,《儒林外史》的讽刺,不仅仅是对人物的讽刺,更是对当时社会中各种现象的揭露、控诉和批判。
为保证甲方的使用舒适性及免去甲方的后顾之忧,就甲方现有水处理设备(以下简称“设备”)的维修保养等事宜达成以下协议:★一年期维护保养:起止有效时间为2017年 1 月 20 日到2018年 1 月 19 日;一. 设备信息甲方委托乙方服务的设备具体设备信息如下:设备名称 设备规格 数量 设备所在地 备注纯水设备 ZKRO-10TPH 1 广州从化 二. 乙方承诺1.24小时电话咨询服务乙方售后服务部门提供24小时电话咨询服务,确保及时有效的解答甲方咨询和投诉。2.一年期上门维护保养:起止有效时间为2017年 1 月 20 日到2018年 1 月 19 日3. 定期提醒乙方将提醒甲方定期对设备进行维护保养,并告知按附表周期及时更换耗材计划。4. 维护保养内容4.1乙方每月对设备进行一次功能性检查,验证该系统的前一处理单元出水水质是否可以满足后一处理单元的要求,最终出水水质是否可以满足使用要求。
活动目标:l、通过游戏活动,发展幼儿走跑交替、跳跃及平衡的能力,体验游戏带来的乐趣。2、通过游戏活动,发展幼儿四肢的协调性、柔韧性和动作的灵敏性,提高幼儿听信号做相应动作的能力。3、培养幼儿的扩散性思维和协作能力。 活动准备:l、红、黄、蓝、绿色的塑料圈每人四个。2、红、黄、蓝、绿色的小旗各一面。3、大鼓一面,柱子两根。4、录音机、磁带。5、场地布置如图。
甲方(劳务发包方): 乙方(劳务承包方): 为明确甲、乙双方在美的罗兰溪谷锦园2#、4#、6#号楼及部分车库工程的施工权利、义务和经济责任,双方本着平等互利、相互协作、公平、自愿、诚实信用、创造精品工程的原则,签订本施工协议书。一、工程概况:(1)工程名称:罗兰溪谷锦园2#、4#、6#号楼及部分地下车库工程(2)工程地点:邯郸市冀南新区中华南大街科创四路以北,滏淼一路以东,科创三路以南 。(3)结构形式:剪力墙结构。(4)建筑面积:主楼建筑面积约41000m2;车库建筑面积;9535m2。(5)承包形式:包工、包安装、包质量、包安全生产和文明施工、包竣工调试验收 二、合同工期:开竣工日期:2018 年8月10日至2020年8月31日(按项目部实际制定的工期执行)。三、承包范围:(1)施工图纸与设计变更中所包含的室内外全部给排水、强弱电、采暖安装及其附属内容;施工现场临时用水、临时用电线路、管道、设备的布设、安装、维修、巡检等工作。 (2)乙方主要工作包括但不限于以下内容:①所需的结构预留洞口的留设、预埋件、管线槽口开凿与补槽。②材料场内装卸、运输。③文明施工要求的场内材料堆放、整理以及施工后的现场清理等工作。④预留管道洞口的吊模及混凝土浇灌(若甲方施工则扣除该部分的相关费用)。⑤因设计变更引起的工程量增减或返工、修补。⑥成品保护、设备调试、竣工交验。⑦与其他工种的配合施工。⑧本班组现场安全生产和文明施工管理工作。⑨配合省、市、区等安全、环保、质检以及建设单位区域平台和第三方等的所有检查工作。
为城市居民提供休养生息的场所,是城市最基本的功能区.城市中最为广泛的土地利用方式就是住宅用地.一般住宅区占据城市空间的40%—60%。(阅读图2.3)请同学讲解高级住宅区与低级住宅区的差别(学生答)(教师总结)(教师讲解)另外还有行政区、文化区等。而在中小城市,这些部门占地面积很小,或者布局分散,形成不了相应的功能 区。(教师提问)我们把城市功能区分了好几种,比如说住宅区,是不是土地都是被居住地占据呢?是不是就没有其他的功能了呢?(学生回答)不是(教师总结)不是的。我们说的住宅区只是在占地面积上,它是占绝大多数,但还是有土地是被其它功能占据的,比如说住宅区里的商店、绿化等也要占据一定的土地, 只是占的比例比较小而已。下面请看书上的活动题。
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;
本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④