1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
【初读课文,整体感知】1. 以《时间的脚印》为题目有什么好处?文章的题目《时间的脚印》,是从高士其《时间伯伯》一诗中引申借用来的。其拟人化手法的运用,形象地说明了那些形形色色、大大小小的岩石中都潜藏着时间的踪影,以引起人们的探究欲望和阅读兴趣。【再读课文,梳理结构】1.第一部分(第1至第4自然段)说明岩石“是记录时间的方式中最重要的一种”。2.第二部分(第5至第29自然段)分层次地详细说明岩石是怎样记录时间的。这部分分三层。3.第三部分(第30自然段至全文完)总结全文,说明岩石记录时间的意义,号召人们进一步去大自然找寻时间的踪影,去一步步走向地下的宝库。【感悟精彩句子】1.“狂风来了,洪水来了,冰河爬来了”。
一、复习导入1、口答:最大的一位数是几?最小的两位数是多少?这两个数相差多少?2、数数:10个10个地数,从10数到100; 1个1个地数,从91数到99; 问:99加1是多少?3、导入:你会从100开始接着往后数吗?今天开始我们将要学习更大的数,下面请你们观察这幅图。二、讲授新课1、出示主题图。(1)观察这幅图,说一说画面上正在发生什么事情?(2)看着画面你想知道什么问题?引导学生估算画面上的体育馆大约能坐多少人?2、板书课题:1000以内数的认识。3、教学例1。(1)数一数。每人数出10个小方块,说说你是怎么数的?板书:一个一个地数,10个一是十。
重点难点1.欣赏和感知理解漫画作品.需要幼儿集中注意观察,这也是能否达到目标的重要条件。因此,我从活动开始便设置了一个个悬念,直到结尾也就是高潮部分,我没有直接揭晓答案,而是留给幼儿一个充分的想像空间。这样,使幼儿的注意得以长久保持。2.了解漫画特点对幼儿是有一定难度的,当然也不是一次活动所能完成的。因此,在活动中,我们不能空洞地将一些抽象的词汇灌输给孩子们听,而是通过精心设计的提问和让幼儿欣赏一些有代表性的漫画作品,有机渗透在活动中。我还设置了漫画墙作为准备和延伸活动,长期贴在教室里,使幼儿自己从中慢慢体会,不断深入地了解漫画。 活动目标1.理解漫画作品内容,尝试运用语言和图画刨编故事结尾。2.通过漫画欣赏、初步了解漫画的基本特点,更加喜欢漫画这一艺术形式。3.养成细致观察和大胆想像的习惯。 活动准备1.漫画书《父与子》一本,完整的4幅漫画作品、不加背景的图4一幅。2.供幼儿续编添画的作业纸每人一张、黑色水笔每人一根。3.布置一个漫画墙,上面贴有许多有代表性的漫画作品(单幅的、连环的、黑白的、彩色的、有趣可笑的、充满幻想的、讽刺褒贬的)。
抒情句子1、对于广大的关东原野,我心里怀着炽痛的热爱。我无时无刻不听见……因为我常常感到它在泛滥着一种热情。 2、我总是被这种声音所缠绕,……我都会突然想到是我应该回去的时候了。3、在故乡的土地上,我印下我无数的脚印。在那田垄里埋葬过我的欢笑。 ……在那沉重的镐头上留着我的手印。2、怎样理解文中的“我常常感到它在泛滥着一种热情”中的“泛滥”与“在那田垄里埋葬过我的欢笑”中的“埋葬”这两个词语的确切含义?“泛滥”原意是“江河水溢出,淹没土地”,又引申为“思想、事物到处扩散”。这里用 “泛滥”表达了作者的心情正如决堤之水不可遏抑地向四下泛滥奔流,作者那激愤狂放的心情用了“泛滥”来形容较之用“澎湃”“涌动”更多了几分野性和难以驾驭的力量。`
目标导学二:体会写景技巧1.第一段作者用什么写作手法写出济南冬天“温晴”的天气特点,有何好处?通过和北平冬天多风、伦敦多雾、热带日光的毒和响亮(根据语境是指“晴朗得刺眼”)作对比,写济南冬天无风声、无重雾、无毒日的“奇迹”“怪事”,突出它独有的“温晴”美景,赞赏它是个“宝地”。2.第3自然段描写薄雪覆盖下的山,运用了移步换景的手法,请你简要分析。作者运用移步换景的手法,从山上的矮松写到山尖、山坡和山腰的薄雪,自上而下,把雪的光、色、态逐步展现在读者面前,表现济南冬天的秀美。3.最后一段描写水色,运用了哪些手法?有什么好处?(1)衬托手法:作者描写绿萍的绿、水藻的绿、水面柳影的绿,衬托出水绿。(2)联想手法:由水的绿联想到绿的精神,联想到春意盎然的生机。(3)化动为静:运用拟人修辞,写水藻“把终年贮蓄的绿色全拿出来”,写“水也不忍得冻上”,突出水清、水暖的特点。
目标导学三:拓展理解1.几十年后,回忆起母亲,史铁生写下了这么一段话,请读一读,说说你读出了作者怎样的情感。那时的我,作为她的儿子,还太年轻,还来不及为母亲着想,我被命运击昏了头,一心以为自己是世上最不幸的一个,不知道儿子的不幸在母亲那儿总是要加倍的。她有一个长到二十岁上忽然截瘫了的儿子,这是她唯一的儿子;她情愿截瘫的是自己而不是儿子,可这事无法代替;她想,只要儿子能活下去哪怕自己去死呢也行,可她又确信一个人不能仅仅是活着,儿子得有一条路走向自己的幸福的路;而这条路呢,没有谁能保证她的儿子终于能找到——而这样的母亲,注定是世界上活得最苦的母亲。我感受到:作者对母亲的怀念、思念之情;作者对母亲的忏悔、懊悔、后悔、悔恨之情;作者对母亲的自责、内疚之情;作者自己的成长,完全理解母亲了……2.阅读课后练习四史铁生《我与地坛》中的同样是写母亲一段文字,说说它与课文在写法上有何不同。
2.作为一篇优美的散文,本文在写景上有许多亮点,你认为春雨图中哪些亮点?①树:“树睁开特别明亮的眼睛”把树写活了,人格化了。②水珠:“水珠子从花苞里滴下来,比少女的眼泪还娇媚”,采用拟人的修辞手法,把水珠写活了,人格化了。把花苞滴下来的水珠子与少女的眼泪作比,说它比少女的眼泪还娇媚,使本来平淡无奇的自然现象拥有了人的神态和情感,写的形象生动。③水雾:或浓或淡的水雾映射着雨后的阳光,更映射着雨后的美丽世界。④小草:谁听过春草复苏、萌发、成长的声音?作者听到了。这沙沙声是真正热爱大自然、珍视生命、细心于生活的人用心灵听到的,运用比喻的修辞手法,生动形象的写出了小草在春雨的滋润下焕发出勃勃的生机。这美丽的文字是作者用细腻的心写出来的。⑤空气:空气本是无色无味的,平常到甚至让人忽视。可是在作者笔下空气却在春雨过后透出果子一样的芳甜,这正好可以和我们学过的一个句子互相诠释“清新的空气使我觉得呼吸的是香”。
目标导学三:学习综合运用多种表达方式明确:本文以记叙为主,穿插着议论、抒情。第一部分,作者首先抒发了自己的亲身感受,又以“谁是我们最可爱的人”设问作为记叙、议论的中心,接着用一个气势磅礴的排比句揭示了志愿军战士的精神风貌,从意志、品质、气质、胸怀四个方面进行高度评价和赞美,为文章具体事例的叙述做了思想认识方面的提示和感情的铺垫。第二部分,文章以记叙为主,具体叙述了三个典型事例,在叙述完每一个事例后,文章都穿插了议论、抒情。这些议论抒情,既起到深化主题的作用,又增强了文章的感染力。第三部分,作者告诉人们要珍惜战士们用鲜血和生命换来的幸福生活。没有用单调枯燥的说教,而是用朋友的恳谈来启迪人们感受到幸福生活的来之不易。拓展延伸:收集新时代“最可爱的人”典型事迹的资料,准备举办演讲会。
结束这节课,我心里很轻松,因为在以往的教学中学生感觉到:说明文很单调、枯燥不生动。而本节课学生与我配合得非常好,原因是我利用多媒体展示的几幅画面,把学生的注意力都集中在所讲的内容中,并且调动了学生学习的积极性,认为物候现象就在我们的身边,激发学生探索科学奥秘的兴趣,更多地去了解大自然,认识大自然,热爱大自然。在初读课文的时候,我训练了学生的概括能力;在分清举例说明的方法时,让学生明白什么是举例子的说明方法;在细读课文的时候,让学生学习生动地有条理地说明事物的方法,还重点品味第一段的生动语言,在品味说明文语言的准确性时,有日常生活中的例子导入,深入浅出地讲解了说明语言准确性的两点情况。
千百年来,南极这个亘古长眠的世界一面向世人展示着自己冰肌玉骨、绝世无双的美丽,一面以其层层冰嶂、酷冷奇寒的肃杀之气凛然回绝了人类无数次好奇的拜访。因为那里的天气实在是太恶劣了。而近百年来,无数探索者在南极留下了他们的足迹,他们为人类的进步事业作出了自己的贡献,有的甚至献出了宝贵的生命。1911年,两位著名的探险家挪威人阿蒙森和英国人斯科特踏上了冲击南极点的征程。这两个人都想成为第一个到达南极点的英雄。经过一番激烈的竞争,结果是阿蒙森队捷足先登,于1911年12月14日到达南极,而斯科特队则于1912年1月18日才到达,比阿蒙森队晚了将近五个星期。最后,阿蒙森胜利而归,成功的旗帜永远飘扬在南极点上,而斯科特等五名冲击南极的英雄,因为南极寒冷天气的突然提前到来,饥寒交迫,体力不支,在返回的途中与严寒搏斗了两个多月,最后长眠在茫茫的冰雪之中。
第三节,把“爱”比作“四月的花”和“月圆”,表现了爱的美与庄严。第四节,用“雪化后那片鹅黄”“初放芽的绿”“白莲”表现了爱的生命力和纯净。第五节,“一树一树的花开”“燕子呢喃”表现爱之深,情之切。3.诗人通过不同的感官来描写“四月”所独有的景物,试结合内容进行分析。明确:通过视觉描写:“黄昏”“星”“云烟”“花”。通过听觉描写:“笑响”“四面风”“燕子呢喃”。通过触觉描写:“风的软”“暖”。多角度展开描写,表现了诗人的“爱之深,情之切”。能引导读者调动多种感官去感受诗人心中的“爱”,给读者以感染。【教学提示】指导学生结合诗人笔下的意象进行分析。目标导学三:品读诗句,把握诗歌艺术特色探究:“新月派”的重要成员之一闻一多先生曾提出了“三美原则”,即“音乐美、绘画美、建筑美”,奠定了新格律诗派的理论基础。本诗既是新格律诗的典范,它是否表现了“三美”原则?是如何表现的?
解析:根据“全等三角形的对应角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形内角和定理来求∠ACB的度数.解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法总结:本题将三角形内角和与全等三角形的性质综合考查,解答问题时要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.三、板书设计1.全等形与全等三角形的概念:能够完全重合的图形叫做全等形;能够完全重合的三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应角、对应线段相等.首先展示全等形的图片,激发学生兴趣,从图中总结全等形和全等三角形的概念.最后总结全等三角形的性质,通过练习来理解全等三角形的性质并渗透符号语言推理.通过实例熟悉运用全等三角形的性质解决一些简单的实际问题
【类型二】 根据数轴求不等式的解关于x的不等式x-3<3+a2的解集在数轴上表示如图所示,则a的值是()A.-3 B.-12 C.3 D.12解析:化简不等式,得x<9+a2.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
一、感受地震给人类带来的灾难. 1、讲述地震来临时的情况。 看录像 提问:小朋友看了什么?(幼儿回答如:幼儿说说自己的见识和感受)再看一遍录像 知道遇到地震时不要慌,要听从老师的指挥,有序地撤离可以避免危害的发生。 那地震来了我们要怎么办?(幼儿讨论)