1. 监管力度不一,学习效率参差。 线上学习,有部分家长很重视,为孩子提供了安静的学习环境,部分学生也很自律,能按时听课、积极思考、完成各项课内课外练习。但不排除存在家长无条件提供好的学习环境,学生缺乏自控能力的现象。我校生源一大部分是新居民子女,线上教学的中后期,学生家长绝大部分外出务工,学生的学习几乎处于“放任自流”的状态。孩子缺少大人的监督,不自觉更体现无疑,上课不专心,不记笔记,甚至不上课的也都存在,更别说语文的口头朗读、背诵作业和笔头的听写作业等的落实了。学生上课的参与率不保障,学校效率也参差不齐,两级分化明显。
《卖火柴的小女孩》统编教材三年级上册第三单元的第一篇精读课文,是丹麦作家安徒生的著名童话。讲述了在下着大雪的大年夜,一个为了生活被迫卖火柴的小女孩冻死街头的故事。表达了作者对当时黑暗社会的痛恨,对贫苦人民的深切同情。文章虚实交替,美丽的幻象和残酷的现实更迭出现,是这篇童话的特点。本文原是人教版六年级下册第四单元“学习外国名篇名著”中的一篇文章,旨在引导学生感知外国作品的特点,理解含义深刻的句子,感受卖火柴的小女孩悲惨的命运,体会作者表达的思想感情。统编教材将文章编排在三年级,“感受童话丰富的想象”为本单元的语文要素,旨在引导学生发现幻象与愿望之间的关系,感受童话丰富的想象,帮助学生建立对童话体裁的初步认识。
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
所属单位机关部门D组织ZT教育可以适当错后启动,拉开时间梯次,但也不能与上级单位间隔时间过长,最晚5月5日前要全面启动。需要强调的是,不管什么时间启动,具体到每个单位、部门,开展ZT教育的时间都不能少于5个月。无论采取哪种方式启动,都要讲清这次ZT教育的重大意义、目标要求、工作安排等。总公司机关各部门、所属各单位、各化工公司要将启动方案报巡回指导组审阅把关,巡回指导组还要现场参加指导各部门、各单位的启动工作。三、高水平进行ZT教育督促指导。强有力的督促指导是搞好ZT教育的重要保证,要把严督实导贯穿指导开展ZT教育全过程。按照D中央要求,总公司所属各单位不再派出指导组。这对总公司巡回指导组来说,担子更重了,既要直接指导所属各单位和化工公司本级D委,又要延伸指导所属单位机关部门、直属单位D组织。
无论采取哪种方式启动,都要讲清这次ZT教育的重大意义、目标要求、工作安排等。总公司机关各部门、所属各单位、各化工公司要将启动方案报巡回指导组审阅把关,巡回指导组还要现场参加指导各部门、各单位的启动工作。三、高水平进行ZT教育督促指导。强有力的督促指导是搞好ZT教育的重要保证,要把严督实导贯穿指导开展ZT教育全过程。按照D中央要求,总公司所属各单位不再派出指导组。这对总公司巡回指导组来说,担子更重了,既要直接指导所属各单位和化工公司本级D委,又要延伸指导所属单位机关部门、直属单位D组织。要把准巡回指导工作定位,切实尊重各单位D委主体地位,紧紧依靠他们开展工作,既指出存在问题又要帮助研究对策,真正实现同题共答。
这篇《国旗下的讲话稿:红领巾相约中国梦》,是特地,希望对大家有所帮助!红领巾,它虽然只是一块再简单不过的红色的布,但有时候,它却包含着一些特殊的意义。——题记正如大家所知道的,红领巾是红旗的一角,是革命烈士用鲜血染红的。这里有面对敌人的铡刀绝不屈服的刘胡兰,有冒着生命危险把敌人骗进了八路军包围圈的王二小,还有许许多多的无名烈士。正是因为有了他们的英勇牺牲、无私奉献,才有了今天我们和平、幸福的生活。每当我站在少先队队旗下的时候,每当我佩戴红领巾的时候,我的心里便会升腾起一股神奇的力量,我感到非常的自豪和骄傲。我是多么喜欢这小小的红领巾,它伴随着我一天天的成长,它带领我走进立志成材的道路,从此给我的生命注入了理想和信心。全体少先队员们,红领巾是对我们的肯定,是我们的荣誉,我们不应该忘记为成为一名少先队员而付出的努力,不应该忘记次戴上红领巾的光荣与幸福,更不应该忘记在队旗前面发过的誓言。我们应该更加爱护它,尊敬它,让它更加鲜艳的飘扬在每一位少先队员的胸前。
关于期中考试的国旗下讲话稿一:老师们,同学们,大家上午好!今天我讲话的题目是:提高复习效果,迎接期中考试。同学们,按照教育局工作安排,我们将在本大周进行期中考试,为了提高复习效果,在期中考试中取得满意的成绩,在此我给同学们提以下几点要求。一、端正思想,充分认识期中考试的重要性。离期中考试只有五天的时间了,时间对于我们来说相当紧迫,希望全体同学们要以期中考试复习为重心,以争取期中考试取得好成绩为目标,把必须要做的事情和可做可不做的事情清楚地分开,抓紧时间,认真复习,提高复习质量和效率。二、认真准备,合理安排复习时间和计划。我希望每位同学从今天起,要充分地利用晚自习时间及早读时间,根据每个学生的实际情况出发,安排一个切实可行的复习计划。什么时间该复习哪一个科目哪个知识点,要达到什么目标,都要心中有数,“不打无准备之仗”,谁早准备,谁就拥有学习的主动权;谁拥有的时间多,谁就拥有考试的成功。
演讲稿频道《国旗下的讲话演讲稿:祖国在我心中》,希望大家喜欢。尊敬的老师,亲爱的同学们:大家好!今天我要演讲的题目是:《祖国在我心中》。在爬满甲骨文的钟鼎上,读祖国童年的灵性;在布满烽火的长城上,读祖国青春的豪放;在缀满诗歌与科学的大地上,读祖国壮年的成熟。在河西走廊,华北平原,我看祖国的富饶与辽阔,看祖国千里马般日夜兼程的超越;在长江三角洲、珠江三角洲,我看祖国崇高与巍峨,看祖国繁荣的霓虹灯日夜闪烁,灿若银河;“祖国在我心中”,简简单单的六个字,道尽了多少中华儿女的心声。正是因为有这样一颗中国心,革命先烈抛头颅,洒热血,每一个炎黄子孙看到迎风飘扬的五星红旗都会热血沸腾,壮志激昂。古老的东方有一个全身珠光宝气,雍容华贵的女子。盘古开天辟地、四大发明、**孔子、丝绸瓷器、威武的兵马俑使她光彩照人。她的美让人羡慕万分。但是掀开摞摞发黄的历史,我们看到的又是怎样的一幕呢?时间的指针急速倒转,指向了1840年。
这篇关于国旗下的讲话稿:祖国在我心中,是编辑为您整理的,希望对您有所帮助!国旗下的讲话稿:祖国在我心中滔滔的江水,滚滚的黄河,连绵不断的山路,都属于我们伟大的祖国。祖国的山川雄奇,祖国的河水秀逸,祖国的胸怀无比广阔。当侵略者的铁碲践踏我们美丽山河的时候,每一个有良知的中国人脸上流着泪,心中淌着血。为了心中神圣不可侵犯的祖国,他们在黑暗中摸索,在屈辱中抗争。闻一多拍案而起,横眉冷对暗杀者的手枪;吉鸿昌高挂写有“我是中国人”标语的木牌,走在一片蓝眼睛、黄头发的洋人之中;张学良,杨虎城将军为了挽救民族危亡,毅然发动了西安事变……英雄长已矣!古往今来,一曲曲悲歌,一个个惊天动地泣鬼神的故事,都讲述一个简单而朴素的信念,祖国在我心中.正是这千千万万的赤子,才撑起了我们民族的脊梁,祖国的希望;正是他们,在自己的“今天”,用满腔的热血,谱写了无愧于时代的《义勇军进行曲》,才使得我们今天的共和国国歌响彻神州,那么气势磅礴,那么雄壮嘹亮。
今天,伴着雄壮的义勇军进行曲,鲜艳的五星红旗再次在我们眼前冉冉升起。回首刚刚过去的两个月,它记录着每一个学子和老师的辛勤,更蕴含着我们的智慧。作为荣智学校新一届的初中生,我们为学校的方方面面感到骄傲,无论是环境优雅的教室还是功能齐备的多功能展示厅,无论是生物实验室、微机室等专用教室,还是图书馆等供我们学习的场所都显得那样舒适温馨,而我们的老师,个个精神抖擞,正是他们的精心呵护与谆谆教诲,才有我们学生的健康成长。他们以纯洁的心灵塑造我们的灵魂,以健康的人格魅力带动我们的品格养成,从而营造我校和-谐健康,洋溢着人文色彩的校园氛围。同学们,求学阶段对于我们每个人来说,就像是手中刚刚拿到的新书一样,散发着油墨的清香,蕴藏着很多待开发的秘密,需要我们去探索,“言行规范,健康发展,学有所长”是学校对我们的要求。因此,正如今天一样,当我们迈进校门的那一刻起,我们要说,新的一天我们要从遵守纪律做起。俗话说:“没有规矩不能成方圆。”纪律是做好一切事情的保障,没有纪律的约束,是什么事情也做不好的。大家知道,鲁迅先生书桌上的“早”字,是严格自律的表现,是自觉守纪的典范,正因为这样,鲁迅先生才成为伟大的文学家、思想家、革命家。曹操“割发代首”,带头守纪,古往今来传为佳话。
分析:(1)(2)用乘法的交换、结合律;(3)(4)用分配律,4.99写成5-0.01学生板书完成,并说明根据什么?略例3、某校体育器材室共有60个篮球。一天课外活动,有3个班级分别计划借篮球总数的 , 和 。请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?解:=60-30-20-15 =-5答:不够借,还缺5个篮球。练习巩固:第41页1、2、7、探究活动 (1)如果2个数的积为负数,那么这2个数中有几个负数?如果3个数的积为负数,那么这3个数中有几个负数?4个数呢?5个数呢?6个数呢?有什么规律? (2)逆用分配律 第42页 5、用简便方法计算(三)课堂小结通过本节课的学习,大家学会了什么?本节课我们探讨了有理数乘法的运算律及其应用.乘法的运算律有:乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理数的运算中,灵活运用运算律可以简化运算.(四)作业:课本42页作业题
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法总结:如果按照先算乘法,再算加减,则运算较繁琐,且符号容易出错,但如果逆用乘法对加法的分配律,则可使运算简便.探究点三:有理数乘法的运算律的实际应用甲、乙两地相距480千米,一辆汽车从甲地开往乙地,已经行驶了全程的13,再行驶多少千米就可以到达中点?解析:把两地间的距离看作单位“1”,中点即全程12处,根据题意用乘法分别求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到达中点.方法总结:解答本题的关键是根据题意列出算式,然后根据乘法的分配律进行简便计算.新课程理念要求把学生“学”数学放在教师“教”之前,“导学”是教学的重点.因此,在本节课的教学中,不要直接将结论告诉学生,而是引导学生从大量的实例中寻找解决问题的规律.学生经历积极探索知识的形成过程,最后总结得出有理数乘法的运算律.整个教学过程要让学生积极参与,独立思考和合作探究相结合,教师适当点评,以达到预期的教学效果.
1.掌握有理数混合运算的顺序,并能熟练地进行有理数加、减、乘、除、乘方的混合运算.2.在运算过程中能合理地应用运算律简化运算.一、情境导入在学完有理数的混合运算后,老师为了检验同学们的学习效果,出了下面这道题:计算-32+(-6)÷12×(-4).小明和小颖很快给出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小颖:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判断出谁的计算正确吗?二、合作探究探究点一:有理数的混合运算计算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算;(2)题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.
1、掌握有理数混合运算法则,并能进行有理数的混合运算的计算。2、经历“二十四”点游戏,培养学生的探究能力[教学重点]有理数混合运算法则。[教学难点]培养探索思 维方式。【教学过程】情境导入——有理数的混合运算是指一个算式里含有加、减、乘、除、乘方的多种运算.下面的算式里有哪几种运算?3+50÷22×( )-1.有理数混合运算的运算顺序规定如下:1 先算乘方,再算乘除,最后算加减;2 同级运算,按照从左至右的顺序进行;3 如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。 加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。注意:可以应用运算律,适当改变运算顺序,使运算简便.合作探究——
本节课开始时,首先由一个要在一块长方形木板上截出两块面积不等的正方形,引导学生得出两个二次根式求和的运算。从而提出问题:如何进行二次根式的加减运算?这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。本节课是二次根式加减法,目的是探索二次根式加减法运算法则,在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则。2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力。3.对法则的教学与整式的加减比较学习。在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣。
1.会用二次根式的四则运算法则进行简单地运算;(重点)2.灵活运用二次根式的乘法公式.(难点)一、情境导入下面正方形的边长分别是多少?这两个数之间有什么关系,你能借助什么运算法则或运算律解释它?二、合作探究探究点一:二次根式的乘除运算【类型一】 二次根式的乘法计算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法总结:几个二次根式相乘,把它们的被开方数相乘,根指数不变,如果积含有能开得尽方的因数或因式,一定要化简.【类型二】 二次根式的除法计算a2-2a÷a的结果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故选C.
1.关于二次根式的概念,要注意以下几点:(1)从形式上看,二次根式是以根号“ ”表示的代数式,这里的开方运算是最后一步运算。如 , 等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前面乘有一个有理数或有理式(整式或分式)时,虽然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前面与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,可以是某个确定的非负实数,也可以是某个代数式表示的数,但其中所含字母的取值必须使得该代数式的值为非负实数;(4)像“ , ”等虽然可以进行开方运算,但它们仍属于二次根式。2.二次根式的主要性质(1) ; (2) ; (3) ;(4)积的算术平方根的性质: ;(5)商的算术平方根的性质: ;
教学过程一、导入师:我国西南边陲,居住着众多勤劳、勇敢而善良的少数民族,这个单元我们要学习来自边寨的飞歌。在云南,撒尼人民更是热情、好客。听!他们正在邀请我们这些远方的客人留下来与他们共度佳节呢!二、新课学习1.初听歌曲《远方的客人请你留下来》音频。2.分组讨论分析:① 师:歌曲的情绪是怎样的?撒尼族是怎样的一个民族?你是怎样从他们的音乐中听出来的呢?他们又是用什么请远方的客人留下来呢?② 歌曲采用了哪种演唱形式?③ 歌曲表达了当地人民怎样的心情?3.学生讨论。一组生:歌曲的情绪是欢快活泼、热情洋溢的。生:撒尼人民非常热情好客。生:用路旁正在开的鲜花儿,树上等人摘的果子,迎风荡漾的谷穗,招待远方的客人留下来。二组生:领唱与合唱结合的形式。三组生:表现了当地人民热情好客的习俗与风尚。教师适时引导,及时总结(介绍撒尼是彝族的一个分支及有关撒尼人的风土人情。再介绍这首歌在1957年莫斯科举行的第六节世界青年联欢节中获创作金奖。由于采用一名女高音领唱与男高、女高的声部领唱的交替,所以显得音色变化丰富,也是歌曲更加亲切、热情、活泼、生动,且富有趣味性)。4.播放云南简介。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。