第一,多理解。让我们在选择后多理解。~~年前,我和现在许多刚毕业的年轻同事一样,带着各种情绪选择了教育这个行业,也带着憧憬和激情来到这里。弹指一挥间,我已跨入中年的行列,变成了传说中的老教师,经历了和大家一样的酸甜苦辣后,我慢慢理解了教师这份职业的意义之所在。由鲜花和掌声、关注与期待交织在一起的教师节,使更多的人把热情与尊重,理解与关怀的目光投向了我们,使我们和学生一起渡过的每一个平凡的日日夜夜有了更加不寻常的意义。身为教师,我们也曾有年轻气盛的躁动和桃李满园的欣喜;也曾有屡遭误解的痛楚和不眠不休的焦虑。但,从把教师作为一种职业,到把教师当作一种理想与事业的追求,一种挑战自我、完善自我的方式,其间的过程,苦乐自知。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
签约须知1.用人单位不得招用未满16周岁的未成年人。2.劳动合同期限在六个月以下的,试用期不得超过十五日;劳动合同期限在六个月以上一年以下的,试用期不得超过三十日;劳动合同期限在一年以上两年以下的,试用期不得超过六十日。试用期包括在劳动合同期限内。3.用人单位支付劳动者工资不得低于本地最低工资标准。本地区最低工资标准为 元/月(小时)( 年度)
“我们都有一个家,名字叫中国”正如《龙的传人》歌词中讲的,我们是华夏族,我们的祖先世世代代都生活在这片华夏土地上——中国。每人都有一个富强中国的理想,现在,我就说说我的吧。如今,钓鱼岛事态严重化,虽然中国现在很强大,但我认为,中国的国防实力还需加强,所以我想成为一名飞行员,守护我们祖国的这片蓝天。要想成为一名飞行员,就得从细节做起,从一点一滴的小事做起。首先,我应保持一个良好的视力,其次,学习成绩应当优秀,拥有一个良好的视力是我这个梦想的基础,也是关键,因为我要是没有一个良好的视力,学习再好,实现这个愿望也是无稽之谈,其次,若是学习不好,视力好也没有用,没文化,就是个睁眼瞎,所以,两者缺一不可。
国旗下的讲话---做一个文明的高中生 大家早上好!新学期伊始,我们带着希望、带着梦想,又踏上了新的征程,我们带着微笑、带着清新,迎来了新的一天,当黎明的光划破黑暗,它就意味着我们也已长大成人。同学们,也许,你昨天曾拥有辉煌,但那已灰飞烟灭段甜蜜的回味,也许,你昨天曾遭受挫折,但那已成为腮边几滴苦涩的泪痕,忘记以前的成功与失败,我们只需把经验和教训铭记于心,把学习作为每日的挑战,把生活作为对我们的磨炼,怀着自信与乐观,迎接战斗,我想拥有一个良好的心态即是做一个文明的高中生的前提。同学们,高中阶段是人生的黄金时期,而新中,更是你成功的转折点,是你人生的一步大跨越,这里有众多的良师益友; 这里有优雅的学习环境;这里有严格的校规校训。那我们如何做一名品学兼优、文明礼貌的高中生呢?
演讲稿频道《国旗下的讲话稿范文:生命中最重要的》,希望大家喜欢。大家好!许多人也许都曾经问过自己:什么是生命中最重要的东西?尽管给出的答案形形色色、不一而足,但是,每一种答案又都毫无疑问地代表着一种人生观或价值取向。而一旦一个人选择了某种答案,那么,这答案又将反过来深刻地影响着这个人漫长的一生。也许有的同学会问:“你的答案是什么呢?”是什么?这也正是我今天所要回答的问题。两年前,我曾经读过一则寓言,是讲有三个仙女飞临一座王宫时,看到了一个正在熟睡的可爱的小王子,他是老国王唯一的儿子,也是王位的继承人。一个仙女说:“这小王子太惹人爱怜了,我们姐妹三人,每人送他一件礼物吧。”于是,这个仙女首先送给王子礼物——健康,第二个仙女送给王子的礼物是智慧。第三个仙女说:“两位姐姐送给王子的礼物都很好,因为有了健康的身体,他就可以享受人生的财富和爱情,有了智慧,他就可以治理好他的国家。但是,我觉得我应该送给他一颗像鹰一样渴望高翔的心。
尊敬的老师,亲爱的同学们: 大家上午好!今天,我国旗下讲话的题目是《继承传统话中秋》。秋浓了,月圆了,再过几天,一年一度的传统节日----中秋节就要到了!它仅次于春节,是我国的第二大传统节日。中秋的月最圆,中秋的月最明,中秋的月最美,所以中秋节又被称为“团圆节”。金桂飘香,花好月圆,在这美好的节日里,人们赏月、吃月饼、走亲访友,无论什么形式,都寄托着人们对生活的无限热爱和对美好生活的向往。 中秋节是我国古老悠久的传统佳节,象征一个民族的迷人魅力,它本身就是一种奇特而又神秘的艺术,作为一个中国人,我们享受着它的缤纷,我们仰慕她博大的胸襟,我们钦佩她对中国古文化的重大影响。年轻的我们,担负着延续古老文明的重任,中秋欢欣鼓舞时,更不要忘记自己的职责,做一个合格的继承人,这么一笔丰厚的财富,是我们耗尽心血也学不完的。
遵守校纪校规,做文明高中生各位老师,各位同学:大家早上好!今天国旗下讲话的的题目是 “遵守校纪校规,做文明高中生”。日升月落,斗转星移,不觉间,我们已经走过十六七个春秋,匆匆的脚步,如水的岁月,冲淡我们许许多多美好的记忆,尘封许许多多精彩的往事。但对于我们,至真至诚地遵守校规,则是我们心中遵循的坚定信念。自觉养成遵纪守法的习性,是我们珍惜的道德底线,遵纪守法牢牢铭刻在我们的心间,伴随我们快乐健康成长。古人云:"无规矩不成方圆。"马克思说:"我们必须遵守组织的规矩,否则一切都将陷入污泥中。"国有国法,校有校规。这些法律规章是维系国家、学校的基本规则,国家要发展,学校要和谐,我们就要自觉遵守国法,自觉遵守校规。这是毫无疑义的。要自觉遵守校纪校规,做文明的学生,就要用智慧的双眼,清醒的头脑,理智的行为,看学校,看社会,去做事,去为人。我们还年轻,我们往往迷惘与清醒并存,我们要压抑着青春的激荡,要收敛年少的狂放,远离憧憬的诗行,抛弃感情的冲动,迈向理性,走向成熟。
端正态度认真复习 诚信考试争创佳绩同学们,老师们:早上好!我今天讲话的题目是“端正态度认真复习,诚信考试争创佳绩”。同学们,下周高一、高二同学即将迎来新学期对我们学习成果的一次大检阅——期中考试。我们应以积极的心态备考,认真复习,全力以赴,争取考出优异成绩。本次考试对高一学生来说将为我们将来选择方向提供依据,对高二学生来说这是我们跨入高三年级的第一场考试,我们应以此为起点,向着目标迈步,因此,我们要以正确的态度认真对待本次考试。孔子说:学而不思则罔,思而不学则殆,其实,学习也是有规律可循的,在这最后的几天时间里,怎样复习才能更有效呢?我建议同学们从以下几点进行考前复习:1.优化计划,突出重点:期中考试科目多、内容多,而我们用于复习的课堂时间比较少,因而,同学们在复习时一定要针对自己的情况,结合学科老师的要求,为自己制定一个合理的复习计划,科学安排复习时间、明确复习重点。特别提醒的是:在有限的复习时间内,不能盲目地跟着练习和习题走,在完成学科任务的前提下,要能自觉地按照自己制定的复习计划进行自主复习。
甲方(用人单位)名称:xxx传媒有限公司法定代表人或主要负责人:XXX办 公 地 址 乙方(劳动者)姓名 性别 民族 出 生 年 月 文化程度 籍贯 身份证(或其它有效证件)号码 家 庭 住 址 根据《中华人民共和国劳动法》、《中华人民共和国劳动合同法》和有关法律、法规,甲乙双方经平等自愿、协商一致签订本合同,共同遵守本合同所列条款。第一条 劳动合同期限1. 劳动合同期从 年 月 日起至 年 月 日止。其中试用期从 年 月 日起至 年 月 日止。第二条 工作内容及要求乙方安排在 部门从事 工作,乙方必须根据甲方规定的岗位工作职责和要求,按时、按质、按量完成本职工作。第三条 工作时间和休息休假1. 工作时间按下列第 项确定:(1)实行按工时制。乙方每日工作8小时,每月休息 天。(2)根据工作岗位特点实行相关底薪待遇提成制定。2.甲方由于工作岗位需要,上、下班及休息时间应按本单位的规定执行。第四条 劳动报酬及支付方式与时间1.乙方的月工资以基本工资 元+奖金提成组成。2.甲方的工资发放日为每月15日,甲方不得无故拖欠。