(二)夯实农村消防设施基础。xxx市政府将农村消防建设工入县(市)、区政府责任书中乡、村消防规划制定与实施、农村消防设施建设、多种形式队站建设等进行了明确要求。全市各地政府不断大农村消防建设资金投入xx市投入200余万元各乡镇专职消防队配备了6台消防车并将专职消防队经费纳入政府财政预算。xx市12个乡镇全部建立志愿消防队240个行政村全部配备手抬机动泵、建立村屯志愿消防队农村志愿消防队员达到1400余人配备各种载水车辆243台完成了“一村一泵一车一队一水点”的总体工部局。林口县自主研发并推广了“拖拉式多功能水罐抗旱消防车”普及到该县156个村屯农村自防自救能力极大升。(三)夯实群防群治工基础。不断细化消防安全“网格化”管理在村屯成立消防安全管理小组由村委会负责人负责治主任、积极分子、民兵等相关人员参证了农村基层消防工的有效开展。
(三)夯实群防群治工基础。不断细化消防安全“网格化”管理在村屯成立消防安全管理小组由村委会负责人负责治主任、积极分子、民兵等相关人员参证了农村基层消防工的有效开展。同时积极推动村民消防联防组织建设由各村屯农村警室组织并发挥协调和监管用联合各村民委员会由村长、治主任带头发动村民进行消防检查和防火巡查成效明显。(四)夯实农村消防队伍建设基础。全市各地本着“1211”、“1111”原则大力发展多种形式消防队伍创新建立了“四级灭火响应”农村消防机制(即以村屯志愿消防队出动1台手抬机动泵、简易灭火工具到场进行火灾扑救一级响应以行政村所辖志愿消防队到场增援二级响应以乡镇专职消防队出动到场增援三级响应以公安消防队出动到场统一组织指挥火灾扑救四级响应)并在全市范围内推广。
(三)夯实群防群治工作基础。不断细化消防安全“网格化”管理,在村屯成立消防安全管理小组,由村委会负责人直接负责,治保主任、积极分子、民兵等相关人员参加,保证了农村基层消防工作的有效开展。同时,积极推动村民消防联防组织建设,由各村屯农村警务室组织并发挥协调和监管作用,联合各村民委员会,由村长、治保主任带头,发动村民进行消防检查和防火巡查,成效明显。(四)夯实农村消防队伍建设基础。全市各地本着“1211”、“1111”原则,大力发展多种形式消防队伍,创新建立了“四级灭火响应”农村消防机制(即以村屯志愿消防队出动1台手抬机动泵、简易灭火工具到场进行火灾扑救为一级响应,以行政村所辖志愿消防队到场增援为二级响应,以乡镇专职消防队出动到场增援为三级响应,以公安消防队出动到场,统一组织指挥火灾扑救为四级响应),并在全市范围内推广。
二是狠抓城区亮化绿化提质。严格按照《x城区亮化提质工作实施方案》《x城区绿化提质工作实施方案》抓好城区重要节点的亮化绿化建设,发放《致全区商铺、企业、酒店一封信》x份,积极宣传引导临街、临河住房、商铺、酒店参与城区亮化绿化提质大行动中来,摸排、发动x至x、x、x沿线x家商铺酒店及x家临街机关单位开展亮化建设,点亮了城市夜空。三是补齐市政设施建设短板。按照“花小钱、办实事”的原则,开展“城市体检”,排查城市污水、排水井x个,更换污水井盖x个、排水井x个;排查城市路灯x个,更换维修x个;对城区x座桥梁进行安全排查,整改安全隐患x处;维护主次干道x处计x公里,维修人行道青石板x平方,更换城区损坏破损的座椅x把,疏通雨水管道x米,整治“空中管线”x处。
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
在教学中我力求做到以下几点一、体现“活动性”,让学生在活动中体验。《新课标》明确指出:“让学生在具体的数学活动中体验数学知识。”因此,我在新授部分以学生喜欢摸子活动开始,以期激发他们学习的热情和兴趣,使学生在活动过程中感知“一定”、“可能”、“不可能”,进而能判断生活与数学中的“一定”、“可能”、“不可能”这三种情况。并能用自己的语言描述事情发生的三种情况;(然而在课堂中,让学生把这三个词语放在一起例举数学与生活中的实例吧,学生说起来还是有一定难度的,所以在教学中我只有通过自己先举例在让学生说,这时学生才能说出例子来。)最后又让学生小组合作学习感知体验可能性是有大小的,达到巩固与应用的目的。
这样设计,既复习了新课所必备的旧知,又自然合理地引入新课,一开始就紧紧吸引了学生的注意力,激发起学生的求知欲。(二)探索新知1、质数和合数的意义(教学例1)。(1)让学生拿出印发的写有例1原题的练习纸,利用学过的求约数的方法,写出1-12每个数的所有约数。(2)按照约数个数的多少进行分类,提出以下问题让学生讨论:①每一个数约数的个数相同吗?各有多少个约数?②按照每个数的约数个数的多少,可以把这些数分成几类?你认为是一类的用同一符号标出来。检查学生讨论情况并提问:你是怎样分的?为什么这样分?每一类各包括了哪几个数?让学生充分发表意见,然后师生共同归纳,并用投影出示三种分类情况:
《8、7、6加几》一课是人教版义务教育课程标准实验教科书·数学·一年级上册P103-104中的内容,本节课是在学生学习和掌握了9加几的基础进行的,计算加法的方法与上节相同。学生对用“凑十法”解决问题已有了初步的认识,因此本节课主要通过让学生动手操作、比较,实现知识的迁移过程。同时,本节内容还兼有巩固上节教材的任务。教材中安排了三个例题。《数学课程标准》指出“数学教学必须注意从学生熟悉的生活情境和感兴趣的事物出发,使孩子们有更多机会从周围熟悉的事物中学习数学、理解数学,让学生感受到数学就在他们的周围。”因此,本节课我创设了一个带领同学去游乐园的情境,引导学生在情境中观察、操作、交流,使学生体验数学与日常生活的密切联系,感受数学在生活中的作用;加深对数学的理解,并运用数学知识解决现实问题。
本节课是学生入学后的第二节数学课。此前,在日常生活中学生已积累了一定的“同样多”、“多些”、“少些”的感性经验,但在比较时,往往是运用数数的方法,而今天要用一一对应的方法比较多少,是一个质的飞跃。新课标指出:义务教育阶段的数学课应突出体现基础性,普及性和发展性,使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。由于学生之间存在着一定差异,所以,我力图体现:根据学生的差异,设计有层次性、梯度性和趣味性的练习,用发展的眼光审视学生的发展,使不同的学生在原有的基础上得到不同的发展,真正面向全体学生,挑战学生智慧,实现有效学习。本节课教学,我先利用课件创设引人入胜的故事情境,在激发学生学习兴趣的同时,引出学习内容。
这是一个所有学生都非常熟悉的学习生活事例,这个事例中包含着基数和序数知识。通过这个活动,可以使学生实实在在地体会到生活中的数学,切实感受数学与自己学习生活的密切联系,使他们学会用数学的眼光去观察身边的事物。5、锤子、剪刀、布这是一个学生都非常感兴趣的游戏,游戏蕴涵了统计和比多少的知识。这样既巩固了比多比少的知识,又使学生体会了比多少的知识在实际生活中的应用,同时还让学生学习了简单的数据整理的方法。教学目标:1、进一步掌握10以内的数的大小顺序,加深对基数和序数的认识,以及10以内数的加减法,提高口算能力。2、灵活运用知识解决问题的能力和与他人团结合作的能力3、培养学生团结合作的意识,体验学数学、用数学的乐趣。
活动四:握手游戏这一环节,我先和一个学生握手,并用甲--乙表示我和刚才那个学生,中间用连线的方式数出我们握了一次手。随后,问题提升:假如有三个小朋友,每两人只握一次手,共握几次手?我先让学生猜想会有几次?然后请三个小朋友上台操作验证,并用数学符号代表三个小朋友,请一个小朋友用连线的方式数。最后提问:同样是3,为什么3个数字可以摆6个两位数,而三个人却只能握三次手?让小朋友通过感悟握手是两个人完成的行为,与位置无关,初步理解简单事物排列与组合的不同。活动五:搭配衣服这一环节,我让学生自主连线搭配,然后请一生上台边连线边介绍,让学生用有序思考的方式解决生活中的实际问题。活动六:买东西这一环节,我让学生在仔细读题的基础上,通过同桌讨论,有序地总结出四种不同的付钱方式,可以从5角考虑起,也可以从1角考虑起。
2.生活情境导入:昨天,老师去逛了逛家电商场,并记下了几种家电的价格,其中,电视机4000元,冰箱2000元,热水器800元,电饭煲300元,电水壶70元,电风扇90元,出示PPT课件。根据这些信息,你能提出哪些关于加减法的数学问题呢?将自己提出的问题写在练习本上,并列式计算。(二)新课探究,整理归纳1.指导学生提出问题,并板书,(1)电视机比冰箱贵多少元?(2)电视机和热水器总共要多少元?(3)冰箱比热水器贵多少元?2.让学生回顾以前学过的旧知识,列式并解答问题。并说说自己的算法,课堂上交流算法,教师板书,让学生充分体会算法多样化。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。
(一)创设情境,引入新知1、引出小数新课程标准强调数学与现实生活的联系,要求数学教学必须从学生熟悉的生活情景和感兴趣的事物出发,使他们体会到数学就在身边,也感受到数学的趣味和作用,增强学生的数学应用意识。一开始我便与学生谈话:汤老师周末带孩子去超市买东西,可是他看不懂商品的价格,你们愿意帮他吗,(愿意)。大家一起帮他读出这些文具的价格是多少钱。激发了学生的兴趣,让学生充满爱心和自信心走进课堂。然后请学生仔细观察这些价格,有什么不同,从而引出小数的概念。2、教学读法我充分相信学生的能力和知识广度。聪明的学生可能一下子就能读出小数,有的学生家长教过或听到过小数怎样读,所以我让学生大胆试一试,然后经过学生小组讨论总结出小数的读法。
请学生先用计算器求出各题的积,然后观察各题中相乘的两个数及所得的积,自主探索和发现积的变化规律。最后进行全班交流,教师做适当总结:这几道算式第一个乘数都是142857,第二个乘数分别是1、2、3、4、5、6,它们的得数与第一个乘数一样,都是由1、2、4、5、7、8这六个数字组成的六位数,不过各个数字所在的数位不同,但如果把这个六位数的乘数按顺时针方向排列在一个圆面上,可以发现这六个积里各数字的排列顺序是一样的,只不过起点不同:乘1的积是从最小的数“1”开始,乘2的积是从第二小的数字“2”开始,乘3的积是从第三小的数字“4”开始……,乘6的积是从最大的数字“8”开始。(2)再出示“想想做做”的第4题先出示:1×1=
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。