3、在进行第一段学唱时,我是让学生听音乐在心里默唱,这样让学生更加清晰地感受歌曲的旋律,培养学生聆听音乐的习惯。4、在处理第一段教学难点:背上那背个呦啥,大背兜喽。我采用带着他们根据节奏念歌词,让孩子了解歌词的特点,感知歌曲的节奏。5、歌曲第二段讲述的是又肥又壮的牛儿,为老百姓拉犁耙地的情景。在本段教学中,我先让他们找出不认识的字和不理解的词,如“四犁又四耙”,就成为本课急需首先解决的问题,只有在理解歌曲的基础上才有可能进一步拓深。为此教我借助多种课件,向同学出示犁和耙并解释了犁和耙的用途。6、八分音符,让学通过学习生明白整首歌曲曲调是欢快、活泼地。最后让学生用愉快地心情,高亢、明亮的声音完整演唱,加深学生对音乐的深层次理解。课堂最后我进行师生生生山歌对唱,将课堂推向高潮。
通过音乐情绪与情感的这种特质,不断丰富学生的情感体验,提升学生的情感强度,使人的情绪、情感同音乐的情绪、情感和谐地沟通与交流。(四)开阔视野 拓展主题弘扬民族音乐是音乐新课程的基本理念之一。通过欣赏琵琶协奏曲《草原放牧》和琵琶独奏《草原放牧》使学生对民族乐器琵琶的音色有了一定的了解。通过亲眼看琵琶、亲手摸琵琶、亲自弹拨琵琶,使学生对琵琶这一古老的民族乐器产生了极大的兴趣。欣赏《女子十二乐坊》的表演激起了学生学习民族音乐的热情,使他们对民族音乐产生了热爱之情乃至对中华民族的热爱之情。随着音乐的流动,学生的兴趣在体验中得到激发;学生的想象在体验中得到发展;学生的情感在体验中得到升华。我想通过这样的教学设计,可以说为学生终身热爱音乐、学习音乐奠定了坚实的基础。
在创编过程中,学生用自主、合作的学习方式来为歌曲创编舞蹈动作,提高了他们的创编能力和表演能力。也进一步让学生感受到歌曲的美,体会到丰收的喜悦心情。最后师生一起舞蹈《桔梗谣》。四、知识拓展最后观看歌舞《丰收的喜悦》。让学生充分体会丰收的喜悦心情,同时增强了学生的民族意识和爱国主义情操。五、让学生说说自己的收获即对这节课进行了小节又紧扣主题。六、板书设计:桔 梗 谣欢乐、 愉悦装饰音七、作业设计:课后把这首歌唱熟练,有兴趣的同学为这首个曲创编更合适的舞蹈动作来为大家表演。我尽可能地将这节唱歌课作到设计合理、有效,让预设的课堂充满魅力。我觉得课上的语言如果在精湛一些会美化整节课,还需要进一步的锻炼。对音乐差生关注的还不是很多。这节课还有很多不足之处,请各位评委老师提出宝贵意见。
然后出示视频资料,让学生们感到我们又来到了朝鲜半岛的朝鲜。2、欣赏《清津浦船歌》1) 初听:学生感受具有三拍子倾向的6/8音乐的《清津浦船歌》,说出音乐内容。2)《清津浦船歌》是表现朝鲜半岛清津浦渔人劳动生活的歌曲。衬词表现出集体劳动中人们的乐观精神。起伏强弱的节奏和渔人的水上生活情景很好地结合在一起,生动形象地展示了清津浦渔民的生活。3)复听:找出歌曲中模仿鼓声的象声词,跟着音乐敲击节奏一起感受清津浦人的乐观精神。(不经意的举动,其实是对学生创造力的培养。)(四)音乐活动:比比谁的耳朵灵老师分别放了中国、日本、朝鲜的音乐片段,学生回答分别是哪国音乐?(这既能拓宽学生的音乐视野又是对本课内容的当堂检测,回扣了教学目标)(五)课堂小结:今天我们参与了第一次亚洲之旅,学习了东亚日本、朝鲜的民歌。让我们相约,下次一起走进印度、泰国和印尼!
4)进行分组练唱、对唱、全体学生合唱。在分组练唱过程中,我将在学生中间进行单独指导,询问他们学习的难点并与学生一起解决,然后适当提问个别学生。通过小组唱、对唱等形式进行演唱评比,提高学生演唱热情。这样,不仅加深了学生对歌曲的熟悉程度,还为学生更好地理解歌曲做了铺垫。5)表演唱,通过表演,不仅展示了学生个性、激发学生的创造力、表现力,而且再次加深了学生对歌曲情感的理解和体验。(三)第三环节——拓展延伸通过对歌曲节拍节奏的改编,让学生感受到得到好朋友原谅后又能快乐的游戏的情绪变化,感受到与好朋友在一起是一件幸福快乐的事。本方案的设计,力求体现以人为本的思想,着眼于学生的主动发展,通过充分的音乐实践,培养学生的能力,提高音乐素养;培养学生的合作意识、探究精神。从目标的提出、到过程的安排、学习方法的确定、乃至学习成果的呈现,都让学生有更大的自主性、更多的实践性。
第五个环节,完整教唱。在教唱过程中,首先采用师一句生一句的方式来学唱,接着利用黑板上歌词卡片的两种颜色,来进行师生接龙唱,例如第一遍,我唱蓝色的乐句,学生唱绿色的乐句,第二遍,则反过来。接龙唱以后则全部由学生自己,完整地演唱一遍。最后,我会让他们带着三拍子的强弱规律,再有感情地演唱歌曲。以上五个环节是我歌曲教学的部分。四、拓展部分(7分钟)这一部分我主要让孩子们分组对歌曲的后半部分进行歌词创编。例如,春天除了藏在花丛中,还可以藏在哪里?而四个小组刚好是春夏秋冬组,每个组探讨出一个词来进行创编。最后将新歌词改进去课件中,让孩子们自己来演唱自己创编的新歌曲。五、欣赏部分(5分钟)音乐中描写春夏秋冬四个季节的歌曲有很多,在音乐欣赏的部分,我会让孩子们通过点击课件中的四季娃娃,欣赏其代表的不同的四季音乐,最后进行简单的小结。
首先出示一些生活中常见的图片,让学生通过欣赏,发现图片里面的三角形,为学生创设情境,从而引出本节课的主角----三角形。然后让学生回忆什么样的图形是三角形?使学生在头脑里迅速的呈现出三角形的概念“由三条线段首尾连接围成的图形叫三角形”。在此强调“首尾连接”。这样由三角形的定义再现三角形的表象,明白三角形围摆的要求,避免学生在操作过程中出现过失性的错误。紧接着抛出一个问题,制造一个问题情境“给你三条线段,你一定能围成一个三角形吗?”对于这个问题,学生可能会做出各种猜测,但我不作任何表态。我利用学生思维中可能出现的错误,创设了这样一个认知矛盾的冲突。因为学生原本以为只要有三条线段,就能围成三角形,但通过老师的演示和自己动手操作,发现并不是有三条线段就能围成三角形,使学生的认知结构受到了严重的冲击,自然而然的引出要解决的问题:那三角形三边有什么关系?并板书课题。第二个环节,实验操作,积累研究的材料。
1、结合具体情境,体会生活中变化的量,感觉变化的量之间的关系,认识变化特征。2、通过自主探究,合作交流,在活动过程中培养学生用多种方法解决问题的能力,进一步发展学生观察、比较、概括等能力,渗透分类的数学思想。3、经历数学活动的过程,体验用多种方法研究问题的乐趣,感觉成功的快乐,增强学好数学的信心。教材安排了多个生活情境,以表格、图像、关系式等不同方式呈现,目的是让学生通过多种方式认识变化的量的特征。因此,我确定本课的教学重点是结合具体情境,感觉变化的量之间的关系,认识变化特征。六年级的学生,抽象思维得到了一定的发展,但以前从未接触过变化的量,从之前熟悉的定向思维模式转向多向思维模式,并认识变化特征会有一定的困难。因此,我确定本课的教学难点是用多种方式认识变化的量的变化特征。本课需要教师准备多媒体课件,为学生准备学习单。
今天我说课的内容是六年级上册第一单元的例6、例7《整数乘法运算定律推广到分数》,我的设计理念是从学生已有的生活经验出发,创设情境、激发兴趣、建构知识、发展思维。下面我从教材、教法和学法、教学过程、教学反思四个方面来对本课进行阐述。一、 说教材1、教材分析:“整数乘法运算定律推广到分数乘法”是在学生已经掌握了分数乘法计算、整数乘法运算定律、整数乘法运算定律推广到小数乘法的基础上进行教学的。教材从生活入手,通过几组算式,让学生计算出○的左右两边算式的得数,找出它们的相等关系,总结出整数的运算定律对分数同样适用。学好这部分内容,不仅培养学生的逻辑思维能力,而且以后能用本课所学的使一些分数的计算简便,也为以后学习用不同方法解答应用题起着积极的推动作用。
尊敬的各位评委、各位老师,大家好,我今天说课的内容是九年义务教育人教版小学数学一年级上册第四单元《认识图形》的第一课时——认识图形。下面我将从说教材、说教法与学法、说教学过程和说板书设计这四方面来谈谈我对本课的教学设想。一、说教材: 1、教材分析 首先我对本教才进行简单的分析,课程标准把空间与图形作为义务教育阶段培养学生初步创新精神和实践能力的一个重要的学习内容。《认识图行》是本册教材《认识图形》的起始课,旨在认识长方体、正方体、圆柱和球这些立体图形,认识这几种图形有助于发展学生的空间观念,培养学生初步的观察能力,动手操作能力和交流能力。 2、说教学目标 依据一年级学生的心理特点和的认知能力,我确定了以下教学目标: 1、知识与技能:通过观察操作,初步认识长方体,正方体,球和圆柱体。 2、过程与方法:在观察、操作、比较等活动过程中,培养学生抽象、概括、实践、创新能力,建立空间观念。
(二)十进制计数法1.新课引入.我们已经学过亿以内的数及计数单位和亿以内的数位顺序.在日常生活中还经常用到比亿大的数,例如我国人口约有12亿,世界人口有50多亿,银行存款已超过百亿等.你能从亿接着往下数吗?2.用算盘数数,认识十亿、百亿、千亿.可以在算盘上先拨上亿,边拨珠边数:10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿.分别板书:十亿 百亿 千亿提问:你学过的个、十、百、千亿,都是用来计数的,它们叫什么?(叫计数单位.)教师指出:十亿、百亿、千亿和以前学习的个、十、百、千亿一样,都是计数单位.
一、说教材《示儿》是南宋著名爱国诗人陆游的绝笔。当时的南宋金兵不断入侵、宋军节节败退,国家山河破碎,不复统一。陆游悲愤交加,临终前立下遗嘱,既有对壮志未酬身先死的悲愤,更有对祖国山河统一必成的坚定信念。二、说教学目标根据新课程标准对本学段学生的要求,我从三个维度设定了以下教学目标1.知识与技能:自学生字,理解“元、同”等词语的意思。2.过程与方法:借助注释,理解诗意;反复诵读,领悟意境。3.情感态度与价值观:引导学生与作者情感产生共鸣,激发学生的爱国主义情怀。三、说教学重难点诗歌的意境作为本节课的重难点。四、说教法和学法我主要采用朗读指导法、谈话法等,借助多媒体课件展示,创设情境,领悟诗歌意境。在学法上,采用读、想、说、写相结合的方法,让学生明诗意、悟诗情。
四、说教学过程依据以上分析,我做了如下的教学流程设计:谈话导入:我们从上一节课中了解了出门远行的杜牧在山间对枫叶的热爱。而今天,江南秋夜,桥畔孤舟,常年的羁旅生涯,使诗人张继对水乡静谧幽美的景色有着更深的感受,顿时绵绵诗意流注笔端,写下了这首千古绝唱《枫桥夜泊》。今天我们一起来欣赏。1.读,读出语感。先听老师范读,给学生一个初体验。然后让学生对照注音、注释读,解决字音词义的问题,再听录音跟读,检查自己诵读时在字音上是否正确。因为已学的《山行》也是七言绝句,学生已做过划分七言绝句节奏的练习,所以在读准字音的基础上再让学生边读边划句子节奏,然后请个别学生诵读,大家评议节奏划分是否正确。这个环节主要体现了学生的自主学习。
其次,教学目标的设定。1.学会本诗中的生字,能正确、流利、有感情朗读古诗,借助教材注释,正确理解古诗的大概意思。2.理解诗人所要表达的思想感情,让学生从中受到教育。3.通过反复诵读,在读中感悟,体会诗歌中表达的思想感情。最后,教学重点、难点的确定。我将教学重点设为有感情地朗读古诗,正确理解古诗大意,体会诗人忧国忧民的情怀。教学难点是在领悟想象中感受诗歌的意象,体会诗人抒发的情感。二、说教法按照语文新课程标准的要求,结合小学生的特点,在教学时我主要采用以下教学方法。1.朗读法,让学生品味诗句的韵味。2.情境教学法。创设情境,利用图片等,激发学生的好奇心和求知欲望。3.启发式教学法,合理设置问题,引导学生把握知识点。
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法总结:如果按照先算乘法,再算加减,则运算较繁琐,且符号容易出错,但如果逆用乘法对加法的分配律,则可使运算简便.探究点三:有理数乘法的运算律的实际应用甲、乙两地相距480千米,一辆汽车从甲地开往乙地,已经行驶了全程的13,再行驶多少千米就可以到达中点?解析:把两地间的距离看作单位“1”,中点即全程12处,根据题意用乘法分别求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到达中点.方法总结:解答本题的关键是根据题意列出算式,然后根据乘法的分配律进行简便计算.新课程理念要求把学生“学”数学放在教师“教”之前,“导学”是教学的重点.因此,在本节课的教学中,不要直接将结论告诉学生,而是引导学生从大量的实例中寻找解决问题的规律.学生经历积极探索知识的形成过程,最后总结得出有理数乘法的运算律.整个教学过程要让学生积极参与,独立思考和合作探究相结合,教师适当点评,以达到预期的教学效果.
1.掌握有理数混合运算的顺序,并能熟练地进行有理数加、减、乘、除、乘方的混合运算.2.在运算过程中能合理地应用运算律简化运算.一、情境导入在学完有理数的混合运算后,老师为了检验同学们的学习效果,出了下面这道题:计算-32+(-6)÷12×(-4).小明和小颖很快给出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小颖:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判断出谁的计算正确吗?二、合作探究探究点一:有理数的混合运算计算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算;(2)题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.
1.会用二次根式的四则运算法则进行简单地运算;(重点)2.灵活运用二次根式的乘法公式.(难点)一、情境导入下面正方形的边长分别是多少?这两个数之间有什么关系,你能借助什么运算法则或运算律解释它?二、合作探究探究点一:二次根式的乘除运算【类型一】 二次根式的乘法计算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法总结:几个二次根式相乘,把它们的被开方数相乘,根指数不变,如果积含有能开得尽方的因数或因式,一定要化简.【类型二】 二次根式的除法计算a2-2a÷a的结果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故选C.
方法总结:在分辨一个图形是否为多边形时,一定要抓住多边形定义中的关键词语,如“线段”“首尾顺次连接”“封闭”“平面图形”等.如此,对于某些似是而非的图形,只要根据定义进行对照和分析,即可判定.探究点二:确定多边形的对角线一个多边形从一个顶点最多能引出2015条对角线,这个多边形的边数是()A.2015 B.2016 C.2017 D.2018解析:这个多边形的边数为2015+3=2018.故选D.方法总结:过n边形的一个顶点可以画出(n-3)条对角线.本题只要逆向求解即可.探究点三:求扇形圆心角将一个圆分割成三个扇形,它们的圆心角的度数之比为2:3:4,求这三个扇形圆心角的度数.解析:用扇形圆心角所对应的比去乘360°即可求出相应扇形圆心角的度数.解:三个扇形的圆心角度数分别为:360°×22+3+4=80°;360°×32+3+4=120°;
解析:此题作为一道开放型题,分类的方法非常多,只要能说明分类的理由即可.但要注意:按某一标准分类时,要做到不重不漏,分类标准不同时,分类的结果也就不尽相同.解:本题答案不唯一,如按柱体、锥体、球体分类:(2)(3)(5)和(6)都是柱体,(4)(7)是锥体,(1)是球体.方法总结:生活中常见几何体有两种分类:一种按柱体、锥体、球体分类;一种按平面和曲面分类.探究点二:几何体的形成笔尖画线可以理解为点动成线.使用数学知识解释下列生活中的现象:(1)流星划破夜空,留下美丽的弧线;(2)一条拉直的细线切开了一块豆腐;(3)把一枚硬币立在桌面上用力一转,形成一个球.解析:解释现象关键是看其属于什么运动.解:(1)点动成线;(2)线动成面;(3)面动成体.方法总结:生活中的很多现象都可以用数学知识来解释,关键是要找到生活实例与数学知识的连接点,如第(1)题可将流星看作一个点,则“点动成线”.如图所示,将平面图形绕轴旋转一周,得到的几何体是()
四、教学设计反思这节内容是学生利用数形结合的思想去研究正比例函数的图象,对函数与图象的对应关系有点陌生.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图象的对应关系应让学生动手去实践,去发现,对正比例函数的图象是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快作出正比例函数的图象.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.当然,根据学生状况,教学设计也应做出相应的调整。如第一环节:创设情境 引入课题,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至对部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直入主题,如提出问题:正比例函数的代数形式是y=kx,那么,一个正比例函数对应的图形具有什么特征呢?