1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.
(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
二是强化学生参与,当好“拉风”服务代言人。组建“小红萌”等品牌志愿服务团队,紧密围绕学生特点设计服务项目,以世界环境日、学习雷锋日系列节日为契机,引导各校少先队员走出校门、进村入户参与环境卫生、垃圾分类等社会实践,在身体力行中增强学生的主体意识和责任观念。2022年以来,组织中小学生深入村居(社区)、农村文化礼堂等地开展各类活动2000余次,参与志愿者达到3万余人次。三是强化社会协同,当好“拉风”潮流主人翁。联合市环保局、市少年宫等单位、社会组织共同开展实地参观学习活动,发挥好环保能源公司、垃圾焚烧发电厂、科普馆等资源场所作用,邀请现场技术人员答疑解惑,通过“大手牵小手”的形式传授垃圾分类、回收、处理专业知识,家校政社多主体、多维度同频共振,营造起“人人有责、人人参与”的浓厚氛围。目前与20余家企业、场馆形成定点联系,已举办100余场次体验活动。
《耷拉着耳朵的小兔子》这是一个情节有趣,形象鲜明突出,语言中透露着嘲笑和鄙视,容易吸引幼儿的学习兴趣,又可以拓展孩子的想象力;其二是现在的孩子由于受生活环境限制,缺乏与周围人相处的经验,普遍存在对周围事物缺乏感情的行为,所以这一内容既符合幼儿年龄特点,又符合孩子的现实需要。故事极具创意,从问题—冲突—解决都充满童趣的处理方式,故事描述小兔子由于个体差异而受到别人的嘲笑,于是它想尽种种办法让耳朵竖起来,其实是带出小伙伴们与小兔子之间的关系。小伙伴们不仅没有安慰小兔子,反而三番两次地嘲笑小兔子,于是制造出了更多的问题。最后小兔子通过医生的点拨,明白了其中的道理,于是接受了这个事实,并用很乐观的态度来对待,结果反而受到了别的小伙伴的欢迎。这个故事和生活比较贴近,又能服务于幼儿的生活,让幼儿在讲述中懂得每个人各有优点,符合大班幼儿的年龄特点和学习特点。这个故事同样也适合我们广大的家长和老师,读后发人深省。
走文明路、说文明话、办文明事,人人做我们绿色校园的安全使者、环保小卫士。…… 国旗下讲话 手拉手共建绿色校园老师们,同学们:大家好!在这个充满希望的季节里在这个充满着我们师生欢声笑语的校园里,我们迎来了开学的第三周。今天,要和大家聊的话题是,用实际行动美化我们的绿色校园,使双莲寺小学成为我们温馨的家园。大家都知道,我们门双莲寺小学是安庆市唯一一所获得“国家绿色教育项目试点学校”称号的小学。我们全体师生都为之感到骄傲和自豪。但是,如果我们留意一下,就会发现,每到课间休息的时候,我们的校园就不再那样美丽。我们有的同学贪图方便,随意乱扔纸屑,包装袋,有的同学随地吐痰。语言不文明,还有的同学不顾自己和他人的安全追逐打闹等等。不文明的事情。时有发生。我曾经看到一张张制片飘落在操场上,经过同学却视而不见,很少有人会弯下他挺直的腰将垃圾拾起扔到垃圾箱里,直到我们负责保洁工作的叔叔将垃圾一一拾起。
尊敬的老师、同学们:大家上午好!同学们,你们知道吗,3月是学雷锋活动月,而3月16日是“手拉手情系贫困小伙伴”全国统一行动日,这项活动始于90年代初,是共青团、少先队组织长期开展的少年儿童广泛参与的道德实践活动,旨在引导少年儿童走出自我,关心他人,是倡导城市和农村、富裕地区和贫困地区、健全的和有残疾的以及不同民族的少年儿童之间相互通信交往、互帮互助、共受教益的一项实践教育活动。每一位参加“手拉手”互助活动的少先队员都要经过三个步骤:第一步:“手拉手找朋友”。基层少先队组织提供贫困地区或有困难的少年儿童的名单,并组织队员填写“手拉手友情卡”,找到需要帮助的小伙伴。第二步:“手拉手交朋友”。参加活动的队员要做到“五个一”:交一个手拉手好朋友,写一封手拉手交友信,给小伙伴寄一本好书,为小伙伴做一件好事,向小伙伴学一种新知识。
三、创造表现:1、边唱边表演(自由结合小组),分组站成圆圈并拍手做动作演唱歌曲《拉勾勾》。2、组织游戏,不要求动作统一,提倡学生自编自演,总结哪一组表演好哪一组演唱好并评奖。四、完美结课:教师发奖总结同学们应团结友爱和每个人都应成为好朋友教学点评:在本课教学中我设计了游戏《拉勾勾、找朋友》紧密结合了本课教学内容,将音乐教学巧妙地溶合进游戏中,让学生在游戏中学习感觉理解音乐,激发学生团结友爱的情感,调动了学生学习的积极、主动性,课堂效果很好!通过创设情境和让学生画头饰等教学手段将学生融入音乐内容之中,从而更好地理解感受乐曲所表现的内容,通过本课教学,今后更应重视对学生能力的培养,如表现音乐、即兴创造等能力。让学生在理解音乐的基础上对音乐有自己的感受和评判,不限制学生对音乐的想象,充分保护学生的想象空间,使学生充分发挥想象力提高理解、感受音乐能力。
3.在第一句的基础上创作第二、三、四句,运用以前学到的模仿、重复等手法进行创作。4.完整地唱给周围的同学听,征求意见进行修改后为大家表演。5、这个环节我也会对应地对各个表演的同学给予小礼品奖励。第四个方面:总结与延伸通过这节音乐课培养孩子们之间的友谊,告诉学生们如何交朋友,培养学生们的交友能力,尤其是对于平时不怎么和同学一起玩耍的同学,通过这节课也能和同学们手拉手一起玩耍了一起讨论问题。最后,整节课在《手拉手》歌曲声中愉快的结束。根据这节课,我提出以下的教学反思1、 对于这堂课的教学目标基本可以达到,课堂中通过小游戏,分发小礼品等活跃了课堂气氛,增加学生的积极性。2、 自主讨论与自学的环节增加了学生的主观能动性。
4、跟琴演唱2-3遍,教师弹奏歌曲学生跟琴演唱。要求:(1)速度不宜过快,学生用中速跟琴演唱(2)声音自然统一气息通畅,避免让学生用喊叫的声音演唱,注意保护嗓音。(三)表现歌曲1、学生齐唱,用歌声唱出对妈妈的爱。2、师生合作,用舞蹈跳出与妈妈的情。3、小组讨论交流:给妈妈送上真诚的祝福。(四)课堂小结五、说预设与反思音乐是一种情感教育。学生通过对音乐作品情绪、思想的感受和理解,使其情感世界受到感染和熏陶,在潜移默化中建立起对美好事物的挚爱之情,使学生在真善美的音乐艺术世界里受到高尚的情操的熏陶。通过本堂课学习,主旨在于让学生关心父母,知道父母抚育自己长大很不容易。任何一节看似准备充分的课,难免顾此失彼、多有失误,本节课也不例外。鉴于学习内容多、信息量大的特点,使得这节课突出的问题是时间的分配问题和歌曲的情感理解问题,有待进一步在演唱中体会。
2、畅谈如何做好民族团结(伴随韩红唱的《天路》,)首先由学生讲解关于民族团结方面的故事《孔繁森的故事》,作为一名小学生,我们时刻要做到民族团结,让民族团结在我们的心里生根发芽开花结果,谁来说一说在学习和生活中你是怎样做的?在学生讲故事的过程中,其他同学一边听一边受到感染,体会民族团结的温暖和重要性。畅谈中学生更加深刻感受到各民族之间应该像家庭中的兄弟姐妹一样心连心。3、赠礼在朝族小朋友被分到我班后,我们就确定了每个人都有自己手拉手的好朋友,我们班的汉族同学特意为他们的手拉手好朋友准备了自制的结对卡和小礼物。赠礼后朝族小朋友教汉族小朋友跳起了朝族舞蹈。4、快板《了不起》赞美祖国万里河山的锦绣,日新月异的变化,以及各民族团结一心建设祖国取得的成就。再一次让学生感受到民族团结的重要以及对伟大祖国的爱。
三.活动过程: 引言:达.芬奇曾经说过:劳动一日可得一天的安眠,劳动一世可得幸福的长眠。 的确,只有亲自参加劳动的人,才能尊重劳动人民,才会懂得珍惜别人的劳动成果,才会懂得幸福的生活要靠劳动来创造。劳动是我们中华民族的传统美德。我们二十一世纪的中学生就更应该热爱公益劳动,珍惜劳动成果。那么,我们应该怎样热爱公益劳动,珍惜劳动成果呢?“五一”是国际劳动节,那让我们为这个全世界劳动人民的节日唱出劳动的赞歌吧。
师:同学们,在四年级的时候,我们已经了解了图形的密铺,请你说一说,什么是图形的密铺?(没有重叠、没有空隙地铺在平面上,就是密铺。)师:图形的密铺又可以叫做镶嵌,以上四个图片,都是由哪些基本图形密铺(镶嵌)而成的呢?(请学生边指边说。)师:还有哪些图形也可以镶嵌?(学生可能回答:三角形,平行四边形,梯形,菱形,正六边形,……)师:今天就请你发挥一下想象力,设计一些与众不同的镶嵌图形。[设计意图说明:学生在四年级已经初步了解了图形的密铺(镶嵌)现象,四幅图片是四年级下册教材《三角形》单元中《密铺》内容中的原图。本单元在此基础上,通过数学游戏拓展镶嵌图形的范围,让学生用图形变换设计镶嵌图案,进一步感受图形变换带来的美感以及在生活中的应用。]二、新授探究一:利用平移变换设计镶嵌图形
(一)例题引入篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?方法一:(利用之前的知识,学生自己列出并求解)解:设剩X场,则负(10-X)场。方程:2X+(10-X)=16方法二:(老师带领学生一起列出方程组)解:设胜X场,负Y场。根据:胜的场数+负的场数=总场数 胜场积分+负场积分=总积分得到:X+Y=10 2X+Y=16
二、教学过程:1、活动一:讲故事,学诚信。1)师:春秋战国时期,商鞅下令在都城南门外立一根三丈长的木头,并许下诺言:谁能把这根木头搬到北门,赏金十两。有人将木头扛到了北门,商鞅立即赏了他五十金。商鞅这一举动,在百姓心中树立起了威信。而商鞅接下来的变法就很快在秦国推广开了,新法使秦国渐渐强盛,最终统一了中国。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。