(一)学科范围: 、四、五、六年级社会,科学,体育,美术,音乐,信息、劳技。 2、七、八年级政治,生物,历史,地理,体育,音乐,信息。九年级音乐、体健。 (二)学科计划 任课教师对所教的副科要写教学计划,备一份计划上交教务处,教师根据教学计划要求进行上课。 体育课要有集合、队列、新授体育知识(篮球、排球、铅球等基本技巧)、完成游戏。一节课至少要上30分钟以上。 美术课计划与上课、作业相结合,学生要掌握绘画的一些基本技能。能完成一些简笔画和蜡笔画。 音乐课必须教会国歌、校歌、三首励志歌曲(手语歌曲音乐教师可自行选定歌曲)共五首歌曲。形成校园流行色。
人们曾用这些词语形容老师:蜡烛、泥土、春蚕、园丁。这些语言既表达了人们对教师的尊敬,也表达了他们对教师的希望。教师是奉献者,教师是耕耘者,桃李满天下的时候,教师是收获者。他们收获的不仅仅是学生的成长,更有社会的进步。所以说,教师的角色是多么的重要。 韩愈说:师者,所以传道、授业、解惑也。教师与学生之间是传导与接受的关系,当学生从家长手里交托到教师手里时,教师的角色发生了转变,但是谁能说不是学生改变了教师呢?学生们永远年轻的思维与灵魂赋予了教师们生生不息的求知态度,学生们活跃丰富的头脑传达给教师灵活知性的教学理念,学生们的态度和表现决定着教师的教学准则与方法。这样,教师与学生的角色互换了,我们是共为一体的关系。我中有你,你中有我。 而社会发展到今天,科学技术飞速进步,社会急剧变革,计算机及信息技术在教学中的的应用,师生之间已经不完全是单纯的传递和接受关系了,学生可以从其他渠道获取知识,有时候甚至在某些方面比教师知道的还多,教师和学生的关系也不那么单一了,教师的角色多元化了。在现代,教师不仅是教学过程的设计者,还是学生学习的引导者和促进者,是教学工作和学生学习生活的组织者和管理者,更是一位教学的反思者和研究者。在这诸多的角色体系中,不管是那一个角色没有演好,都将面临职业生涯的挑战。而这么多的环节之中,最重要的和贯穿始终的就是师德师风的培养和表现。
三年前,我们怀着对未来的美好憧憬,带着家人与老师的殷殷期盼,兴奋地跨进了心仪已久的美丽的邗中校园。春来春去,杨柳依依,书写无悔年华;燕离燕归,白云点点,唱响人生奋斗的凯歌。微冷的春风淡去了烟尘与伤痛,沉淀在内心的,是缤纷的梦想和那收获前的耕耘与奋斗。蓦然回首,三年寒窗苦读,一千多个日日夜夜,铸就了我们必胜的信念与坚不可摧的意志。我们的目光,从来没有像今天这般坚定执着;我们的思想,从来没有像现在这般成熟饱满;我们的心灵,从来没有眼前这般激荡燃烧。
本节课选自《普通高中课程标准数学教科书-必修一》(人 教A版)第五章《三角函数》,本节课是第1课时,本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示法。树立运动变化的观点,并由此进一步理解推广后的角的概念。教学方法可以选用讨论法,通过实际问题,如时针与分针、体操等等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。A.了解任意角的概念;B.掌握正角、负角、零角及象限角的定义,理解任意角的概念;C.掌握终边相同的角的表示方法;D.会判断角所在的象限。 1.数学抽象:角的概念;2.逻辑推理:象限角的表示;3.数学运算:判断角所在象限;4.直观想象:从特殊到一般的数学思想方法;
知识探究(一):普查与抽查像人口普查这样,对每一个调查调查对象都进行调查的方法,称为全面调查(又称普查)。 在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体。为了强调调查目的,也可以把调查对象的某些指标的全体作为总体,每一个调查对象的相应指标作为个体。问题二:除了普查,还有其他的调查方法吗?由于人口普查需要花费巨大的财力、物力,因而不宜经常进行。为了及时掌握全国人口变动状况,我国每年还会进行一次人口变动情况的调查,根据抽取的居民情况来推断总体的人口变动情况。像这样,根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和判断的方法,称为抽样调查(或称抽查)。我们把从总体中抽取的那部分个体称为样本,样本中包含的个体数称为样本量。
①谈话引入:“小朋友们喜爱的小动物还有很多很多呢,你们能给其他动物编上歌词并说出来吗?”让我们来当“小小作词家吧”。 ②鼓励学生进行创编。 ③选择几种,跟着音乐一起唱。 (培养学生的音乐创造能力,同时引导学生要关于观察、关于模仿,通过模仿,由易到难、循序渐进地进行创造。 4、小结 师:动物是人类的朋友,我们要保护动物,爱护动物。听着小朋友们美妙的歌声,看着大家亲密无间的合作,老师心里无比的高兴。同学们还可以把小动物们请到我们的歌曲中来,和他们成为好朋友,你们可真的很能干! 整个教学过程从一开始的律动,后来的模仿到创编和即兴表演,运用感知法、认知法、学唱法,让学生用有感情的演唱和肢体语言表达对小动物的喜爱之情。通过创编,培养合作精神和创新能力,获得成功的喜悦。使学生的演、唱、创新、合作能力得到很好的发展,并渗透了思想教育。
通过规范事项入驻、明确窗口设置、统一大厅标识、专网向乡镇延伸等一系列措施,进一步提升乡镇、街道便民服务中心运行标准,打造便民高效的10分钟政务服务圈,推动政务服务事项“家门口办”。四是推进专网入驻。根据上级文件要求和我市公安局、市场监管局的工作计划,分两批完成专网入驻工作,第一批在6月底前,**、**、**、**、**、**、**完成公安户籍和市场监管专网入驻;第二批在8月底前,**镇、**镇、**镇、**办、**镇、**镇、**乡、***完成公安户籍和市场监管专网入驻。为加快这项工作落实,市政务服务大数据局将会同督查局、纪委等部门,采用召集会议、学习先进、现场督导等方式,加快推进窗口设置、事项进驻、制度建设等工作,确保按时间节点完成任务。2、强力推进智慧城市建设,提高城市治理体系和治理能力现代化。
1、深入开展“有诉即办”工作。为企业和群众提供快捷有效的反映问题渠道,我们与纪检监察机关建立了常态化沟通机制,设立了“办不成事”反映窗口和“有诉即办”服务专区,不但为企业和群众提供兜底服务,还提供“一对一、全流程”的免费帮办代办、免费复印、免费邮寄服务。截至目前,为群众解决各种诉求500余件,处理“疑难杂症”5件,办结率100%,全程帮办代办28件,免费邮寄300余件,免费复印13余万张。2、“好差评”工作。按照省、市目标任务,推动市、乡两级政务服务场所窗口评价设备全覆盖,评价覆盖事项率、覆盖部门率和实名差评按期整改率均达到100%。截止目前大厅所有窗口均配备有评价器和静态二维码;乡镇(街道)便民中心除环翠峪没有评价器外,其他乡镇(街道)都配备有评价器和静态二维码。今年以来,XX省政务服务统一工作平台共收到“好差评”评价363332条;其中差评53条,均已按时整改到位,整改率为100%。大厅服务评价系统共收到评价8541条(3月份开始使用),差评9条,经回访均为手误点错。
幼儿园大班的孩子具有初步的计算能力,为了更进一步的提高他们这种能力为进入小学学习做好准备,我在设计《5的组成》时、注重从感知入手、有具体到抽象、通过有趣的游戏,激发幼儿学习兴趣、达到培养幼儿的观察能力和动手动脑能力的目的。 1、教学目标 (1)这节课我主要让幼儿认识5、学会5以内的数量。正确书写5; (2)让幼儿通过有趣活动来学习5的组成、知道5的4种分法和掌握数分号规律; (3)发展幼儿思维的灵活性、培养幼儿对数学活动的兴趣; (4)培养幼儿同伴的协助能力。 2、教学重点 本节课重点是幼儿学习5的组成、知道5有4种分法 3、教学难点 本节课难点是让幼儿书写5、知道5的分成
以幼儿在第一课时的学习情况及布卢姆的《教育目标分类学》为依据,我从认知、能力、情感方面确立了本节课的目标: (1)幼儿通过游戏能较熟练地分辩10以内的单数、双数。 (2)培养幼儿思维的灵活性,提高幼儿在数学活动中的分析 (3)幼儿在游戏中体验参加数学活动的乐趣。 判断能力。 根据目标,我把活动的重点定位于:幼儿在游戏中通过亲自操作,能作证明10以内的任意一数是单数还是双数。 活动的难点是:幼儿能根据单双数的排序规律,成功地解决游戏中的一些问题。 为了在游戏中充分调动幼儿的各种感官参与活动,我准备了充足的材料:数字卡片、实物教具、磁性黑板、胸卡、头饰等:此外,富有挑战性的游戏还要求幼儿有相关的知识准备,如:掌握序数、相邻数等。
人大代表由人民选举产生,对人民负责,受人民监督,这是宪法和法律明文规定的。目前,全市有各级人大代表近X名,来自方方面面、各行各业,具有联系群众密切、接触群众广泛、沟通群众方便等优势,是推进全市改革发展、维护社会和谐稳定的一支重要力量,也是群众路线的积极拥护者和模范践行者。因此,我们要把践行群众路线与人大代表依法履职有机地结合起来。
一、要认真践行群众路线,依法履行代表职责人大代表由人民选举产生,对人民负责,受人民监督,这是宪法和法律明文规定的。目前,全市有各级人大代表近X名,来自方方面面、各行各业,具有联系群众密切、接触群众广泛、沟通群众方便等优势,是推进全市改革发展、维护社会和谐稳定的一支重要力量,也是群众路线的积极拥护者和模范践行者。因此,我们要把践行群众路线与人大代表依法履职有机地结合起来。
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),